Integral Operators in Non-Standard Function Spaces Volume 2: Variable Exponent Hölder, Morrey–Campanato and Grand Spaces /

This book, the result of the authors’ long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, amo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kokilashvili, Vakhtang (Συγγραφέας), Meskhi, Alexander (Συγγραφέας), Rafeiro, Humberto (Συγγραφέας), Samko, Stefan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Σειρά:Operator Theory: Advances and Applications, 249
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03536nam a22004935i 4500
001 978-3-319-21018-6
003 DE-He213
005 20160512073538.0
007 cr nn 008mamaa
008 160512s2016 gw | s |||| 0|eng d
020 |a 9783319210186  |9 978-3-319-21018-6 
024 7 |a 10.1007/978-3-319-21018-6  |2 doi 
040 |d GrThAP 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
100 1 |a Kokilashvili, Vakhtang.  |e author. 
245 1 0 |a Integral Operators in Non-Standard Function Spaces  |h [electronic resource] :  |b Volume 2: Variable Exponent Hölder, Morrey–Campanato and Grand Spaces /  |c by Vakhtang Kokilashvili, Alexander Meskhi, Humberto Rafeiro, Stefan Samko. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XXIII, 1003 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 249 
505 0 |a IV: Grand Lebesgue Spaces -- 14 Maximal Functions and Potentials -- 15 Grand Lebesgue Spaces on Sets with Infinite Measure -- V: Grand Morrey Spaces -- 16 Maximal Functions, Fractional and Singular Integrals -- 17 Multiple Operators on the Cone of Decreasing Functions -- A: Grand Bochner Spaces -- Bibliography -- Symbol Index -- Subject Index.IV: Grand Lebesgue Spaces -- 14 Maximal Functions and Potentials -- 15 Grand Lebesgue Spaces on Sets with Infinite Measure -- V: Grand Morrey Spaces -- 16 Maximal Functions, Fractional and Singular Integrals -- 17 Multiple Operators on the Cone of Decreasing Functions -- A: Grand Bochner Spaces -- Bibliography -- Symbol Index -- Subject Index. 
520 |a This book, the result of the authors’ long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them. The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book’s most distinctive features is that the majority of the statements proved here are in the form of criteria. The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematics and prospective students. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Functional Analysis. 
700 1 |a Meskhi, Alexander.  |e author. 
700 1 |a Rafeiro, Humberto.  |e author. 
700 1 |a Samko, Stefan.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319210179 
830 0 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 249 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-21018-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)