Feature Selection for High-Dimensional Data

This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.   The authors first focus on the analysis and synthesis...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bolón-Canedo, Verónica (Συγγραφέας), Sánchez-Maroño, Noelia (Συγγραφέας), Alonso-Betanzos, Amparo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Artificial Intelligence: Foundations, Theory, and Algorithms,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03298nam a22005295i 4500
001 978-3-319-21858-8
003 DE-He213
005 20151005162441.0
007 cr nn 008mamaa
008 151005s2015 gw | s |||| 0|eng d
020 |a 9783319218588  |9 978-3-319-21858-8 
024 7 |a 10.1007/978-3-319-21858-8  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Bolón-Canedo, Verónica.  |e author. 
245 1 0 |a Feature Selection for High-Dimensional Data  |h [electronic resource] /  |c by Verónica Bolón-Canedo, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 147 p. 16 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Artificial Intelligence: Foundations, Theory, and Algorithms,  |x 2365-3051 
505 0 |a Introduction to High-Dimensionality -- Foundations of Feature Selection -- Experimental Framework -- Critical Review of Feature Selection Methods -- Application of Feature Selection to Real Problems -- Emerging Challenges. 
520 |a This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.   The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers.   The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining. 
650 0 |a Computer science. 
650 0 |a Data structures (Computer science). 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Data Structures. 
700 1 |a Sánchez-Maroño, Noelia.  |e author. 
700 1 |a Alonso-Betanzos, Amparo.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319218571 
830 0 |a Artificial Intelligence: Foundations, Theory, and Algorithms,  |x 2365-3051 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-21858-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)