Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks Online Environmental Field Reconstruction in Space and Time /
This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication a...
Κύριοι συγγραφείς: | , , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Σειρά: | SpringerBriefs in Electrical and Computer Engineering,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Preliminaries
- Learning the Covariance Function
- Prediction with Known Covariance Function
- Fully Bayesian Approach
- Gaussian Process with Built-in Gaussian Markov Random Fields
- Bayesian Spatial Prediction Using Gaussian Markov Random Fields
- Conclusion.