Stochastic Partial Differential Equations: An Introduction

This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-ma...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Liu, Wei (Συγγραφέας), Röckner, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04275nam a22005775i 4500
001 978-3-319-22354-4
003 DE-He213
005 20151121051247.0
007 cr nn 008mamaa
008 151006s2015 gw | s |||| 0|eng d
020 |a 9783319223544  |9 978-3-319-22354-4 
024 7 |a 10.1007/978-3-319-22354-4  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Liu, Wei.  |e author. 
245 1 0 |a Stochastic Partial Differential Equations: An Introduction  |h [electronic resource] /  |c by Wei Liu, Michael Röckner. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VI, 266 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Motivation, Aims and Examples -- Stochastic Integral in Hilbert Spaces -- SDEs in Finite Dimensions -- SDEs in Infinite Dimensions and Applications to SPDEs -- SPDEs with Locally Monotone Coefficients -- Mild Solutions. 
520 |a This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. The theory of SPDEs is based both on the theory of deterministic partial differential equations, as well as on modern stochastic analysis. Whilst this volume mainly follows the ‘variational approach’, it also contains a short account on the ‘semigroup (or mild solution) approach’. In particular, the volume contains a complete presentation of the main existence and uniqueness results in the case of locally monotone coefficients. Various types of generalized coercivity conditions are shown to guarantee non-explosion, but also a systematic approach to treat SPDEs with explosion in finite time is developed. It is, so far, the only book where the latter and the ‘locally monotone case’ is presented in a detailed and complete way for SPDEs. The extension to this more general framework for SPDEs, for example, in comparison to the well-known case of globally monotone coefficients, substantially widens the applicability of the results. In addition, it leads to a unified approach and to simplified proofs in many classical examples. These include a large number of SPDEs not covered by the ‘globally monotone case’, such as, for exa mple, stochastic Burgers or stochastic 2D and 3D Navier-Stokes equations, stochastic Cahn-Hilliard equations and stochastic surface growth models. To keep the book self-contained and prerequisites low, necessary results about SDEs in finite dimensions are also included with complete proofs as well as a chapter on stochastic integration on Hilbert spaces. Further fundamentals (for example, a detailed account on the Yamada-Watanabe theorem in infinite dimensions) used in the book have added proofs in the appendix. The book can be used as a textbook for a one-year graduate course. 
650 0 |a Mathematics. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Game theory. 
650 0 |a Mathematical physics. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
700 1 |a Röckner, Michael.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319223537 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-22354-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)