Essential Partial Differential Equations Analytical and Computational Aspects /

This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy metho...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Griffiths, David F. (Συγγραφέας), Dold, John W. (Συγγραφέας), Silvester, David J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Springer Undergraduate Mathematics Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03972nam a22005175i 4500
001 978-3-319-22569-2
003 DE-He213
005 20170228161520.0
007 cr nn 008mamaa
008 150924s2015 gw | s |||| 0|eng d
020 |a 9783319225692  |9 978-3-319-22569-2 
024 7 |a 10.1007/978-3-319-22569-2  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Griffiths, David F.  |e author. 
245 1 0 |a Essential Partial Differential Equations  |h [electronic resource] :  |b Analytical and Computational Aspects /  |c by David F. Griffiths, John W. Dold, David J. Silvester. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 368 p. 106 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a Setting the scene -- Boundary and initial data -- The origin of PDEs -- Classification of PDEs -- Boundary value problems in R1 -- Finite difference methods in R1 -- Maximum principles and energy methods -- Separation of variables -- The method of characteristics -- Finite difference methods for elliptic PDEs -- Finite difference methods for parabolic PDEs -- Finite difference methods for hyperbolic PDEs -- Projects. 
520 |a This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection–diffusion problems. The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors. Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific an d engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 0 |a Computer mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
700 1 |a Dold, John W.  |e author. 
700 1 |a Silvester, David J.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319225685 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-22569-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)