Quantum Lie Theory A Multilinear Approach /

This is an introduction to the mathematics behind the phrase “quantum Lie algebra”. The numerous attempts over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary “quantum” Lie bracket have not been widely accepted. In this book, an alternative approach...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kharchenko, Vladislav (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Lecture Notes in Mathematics, 2150
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03043nam a22005415i 4500
001 978-3-319-22704-7
003 DE-He213
005 20151224172327.0
007 cr nn 008mamaa
008 151224s2015 gw | s |||| 0|eng d
020 |a 9783319227047  |9 978-3-319-22704-7 
024 7 |a 10.1007/978-3-319-22704-7  |2 doi 
040 |d GrThAP 
050 4 |a QA251.5 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.46  |2 23 
100 1 |a Kharchenko, Vladislav.  |e author. 
245 1 0 |a Quantum Lie Theory  |h [electronic resource] :  |b A Multilinear Approach /  |c by Vladislav Kharchenko. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 302 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2150 
505 0 |a Elements of noncommutative algebra -- Poincar´e-Birkhoff-Witt basis -- Quantizations of Kac-Moody algebras -- Algebra of skew-primitive elements -- Multilinear operations -- Braided Hopf algebras -- Binary structures -- Algebra of primitive nonassociative polynomials. 
520 |a This is an introduction to the mathematics behind the phrase “quantum Lie algebra”. The numerous attempts over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary “quantum” Lie bracket have not been widely accepted. In this book, an alternative approach is developed that includes multivariable operations. Among the problems discussed are the following: a PBW-type theorem; quantum deformations of Kac--Moody algebras; generic and symmetric quantum Lie operations; the Nichols algebras; the Gurevich--Manin  Lie algebras;  and Shestakov--Umirbaev  operations for the Lie theory of nonassociative products.  Opening with an introduction for beginners and continuing as a textbook for graduate students in physics and mathematics, the book can also be used as a reference by more advanced readers. With the exception of the introductory chapter, the content of this monograph has not previously appeared in book form. 
650 0 |a Mathematics. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Group theory. 
650 0 |a Nonassociative rings. 
650 0 |a Quantum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Quantum Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319227030 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2150 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-22704-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)