Social Network-Based Recommender Systems

This book introduces novel techniques and algorithms necessary to support the formation of social networks. Concepts such as link prediction, graph patterns, recommendation systems based on user reputation, strategic partner selection, collaborative systems and network formation based on ‘social bro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Schall, Daniel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02806nam a22004695i 4500
001 978-3-319-22735-1
003 DE-He213
005 20151103141021.0
007 cr nn 008mamaa
008 150923s2015 gw | s |||| 0|eng d
020 |a 9783319227351  |9 978-3-319-22735-1 
024 7 |a 10.1007/978-3-319-22735-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.76.A65 
072 7 |a UNH  |2 bicssc 
072 7 |a UDBD  |2 bicssc 
072 7 |a COM032000  |2 bisacsh 
082 0 4 |a 005.7  |2 23 
100 1 |a Schall, Daniel.  |e author. 
245 1 0 |a Social Network-Based Recommender Systems  |h [electronic resource] /  |c by Daniel Schall. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 126 p. 42 illus., 35 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Overview of Social Recommender Systems -- Link Prediction for Directed Graphs -- Follow Recommendation in Communities -- Partner Recommendation -- Social Broker Recommendation -- Conclusion. 
520 |a This book introduces novel techniques and algorithms necessary to support the formation of social networks. Concepts such as link prediction, graph patterns, recommendation systems based on user reputation, strategic partner selection, collaborative systems and network formation based on ‘social brokers’ are presented. Chapters cover a wide range of models and algorithms, including graph models and a personalized PageRank model. Extensive experiments and scenarios using real world datasets from GitHub, Facebook, Twitter, Google Plus and the European Union ICT research collaborations serve to enhance reader understanding of the material with clear applications. Each chapter concludes with an analysis and detailed summary. Social Network-Based Recommender Systems is designed as a reference for professionals and researchers working in social network analysis and companies working on recommender systems. Advanced-level students studying computer science, statistics or mathematics will also find this books useful as a secondary text. 
650 0 |a Computer science. 
650 0 |a Application software. 
650 0 |a Graph theory. 
650 1 4 |a Computer Science. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Graph Theory. 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319227344 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-22735-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)