Dense Image Correspondences for Computer Vision
This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applic...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Έκδοση: | 1st ed. 2016. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction to Dense Optical Flow
- SIFT Flow: Dense Correspondence across Scenes and its Applications
- Dense, Scale-Less Descriptors
- Scale-Space SIFT Flow
- Dense Segmentation-aware Descriptors
- SIFTpack: A Compact Representation for Efficient SIFT Matching
- In Defense of Gradient-Based Alignment on Densely Sampled Sparse Features
- From Images to Depths and Back
- DepthTransfer: Depth Extraction from Video Using Non-parametric Sampling
- Joint Inference in Image Datasets via Dense Correspondence
- Dense Correspondences and Ancient Texts.