Dense Image Correspondences for Computer Vision

This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Hassner, Tal (Επιμελητής έκδοσης), Liu, Ce (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction to Dense Optical Flow
  • SIFT Flow: Dense Correspondence across Scenes and its Applications
  • Dense, Scale-Less Descriptors
  • Scale-Space SIFT Flow
  • Dense Segmentation-aware Descriptors
  • SIFTpack: A Compact Representation for Efficient SIFT Matching
  • In Defense of Gradient-Based Alignment on Densely Sampled Sparse Features
  • From Images to Depths and Back
  • DepthTransfer: Depth Extraction from Video Using Non-parametric Sampling
  • Joint Inference in Image Datasets via Dense Correspondence
  • Dense Correspondences and Ancient Texts.