Introduction to Uncertainty Quantification

Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation, and numerous application areas in science and engineering. This text provides a framework in which the main objectives of the field of uncertainty quantificat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sullivan, T.J (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Texts in Applied Mathematics, 63
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Measure and Probability Theory
  • Banach and Hilbert Spaces
  • Optimization Theory
  • Measures of Information and Uncertainty
  • Bayesian Inverse Problems
  • Filtering and Data Assimilation
  • Orthogonal Polynomials and Applications
  • Numerical Integration
  • Sensitivity Analysis and Model Reduction
  • Spectral Expansions
  • Stochastic Galerkin Methods
  • Non-Intrusive Methods
  • Distributional Uncertainty
  • References
  • Index.