Introduction to Uncertainty Quantification
Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation, and numerous application areas in science and engineering. This text provides a framework in which the main objectives of the field of uncertainty quantificat...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Σειρά: | Texts in Applied Mathematics,
63 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Measure and Probability Theory
- Banach and Hilbert Spaces
- Optimization Theory
- Measures of Information and Uncertainty
- Bayesian Inverse Problems
- Filtering and Data Assimilation
- Orthogonal Polynomials and Applications
- Numerical Integration
- Sensitivity Analysis and Model Reduction
- Spectral Expansions
- Stochastic Galerkin Methods
- Non-Intrusive Methods
- Distributional Uncertainty
- References
- Index.