Representations of Reductive Groups In Honor of the 60th Birthday of David A. Vogan, Jr. /

Over the last forty years, David Vogan has left an indelible imprint on the representation theory of reductive groups.  His groundbreaking ideas have lead to deep advances in the theory of real and p-adic groups, and have forged lasting connections with other subjects, including number theory, autom...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Nevins, Monica (Επιμελητής έκδοσης), Trapa, Peter E. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Progress in Mathematics, 312
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04623nam a22005535i 4500
001 978-3-319-23443-4
003 DE-He213
005 20151218191947.0
007 cr nn 008mamaa
008 151218s2015 gw | s |||| 0|eng d
020 |a 9783319234434  |9 978-3-319-23443-4 
024 7 |a 10.1007/978-3-319-23443-4  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
245 1 0 |a Representations of Reductive Groups  |h [electronic resource] :  |b In Honor of the 60th Birthday of David A. Vogan, Jr. /  |c edited by Monica Nevins, Peter E. Trapa. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XIX, 532 p. 7 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 0743-1643 ;  |v 312 
505 0 |a Preface -- McGovern, Trapa, The Mathematical Work of David A. Vogan, Jr -- Achar, On Exotic and Perverse-Coherent Sheaves -- Adams, Vogan, Jr., Parameters for Twisted Representations -- Barbasch, Ciubotaru, Ladder Representations of GL (n, Qp) -- Bhargava, Gross, Wang, Arithmetic Invariant Theory II: Pure Inner Forms and Obstructions to the Existence of Orbits -- Bonnafé, Geck, Hecke Algebras with Unequal Parameters and Vogan's Left Cell Invariants -- Graham, Li, The Smooth Loci of Spiral Schubert Varieties of Type A2 -- He, Centers and Cocenters of 0-Hecke Algebras --  Huang, Dirac Cohomology, Elliptic Representations, and Endoscopy -- Kobayashi, A Program for Branching Problems in the Representation Theory of Real Reductive Groups -- Kostant, Equations for a Filtration of Sheets and The Variety of Singular Elements of a Complex Semisimple Lie Algebra -- Lusztig, On Conjugacy Classes in a Reductive Group -- Lusztig, Vogan, Jr., Hecke Algebras and Involutions in Coxeter Groups -- Marberg, Comparing and Characterizing some Constructions of Canonical Bases from Coxeter Groups -- McGovern, Upper Semicontinuity of KLV Polynomials for Certain Blocks of Harish-Chandra Modules -- Schmid, Vilonen, Hodge Theory and Unitary Representations, in the Example of SL(2,R) -- Shelstad, On Elliptic Factors in Real Endoscopic Transfer I -- Wallach, On the Gelfand-Kirillov Dimension of a Discrete Series Representation -- Williamson, A Reducible Characteristic Variety in Type A. 
520 |a Over the last forty years, David Vogan has left an indelible imprint on the representation theory of reductive groups.  His groundbreaking ideas have lead to deep advances in the theory of real and p-adic groups, and have forged lasting connections with other subjects, including number theory, automorphic forms, algebraic geometry, and combinatorics. Representations of Reductive Groups is an outgrowth of the conference of the same name, dedicated to David Vogan on his 60th birthday, which took place at MIT on May 19-23, 2014.  This volume highlights the depth and breadth of Vogan's influence over the subjects mentioned above, and point to many exciting new directions that remain to be explored.  Notably, the first article by McGovern and Trapa offers an overview of Vogan's body of work, placing his ideas in a historical context. Contributors: Pramod N. Achar, Jeffrey D. Adams, Dan Barbasch, Manjul Bhargava, Cédric Bonnafé, Dan Ciubotaru, Meinolf Geck, William Graham, Benedict H. Gross, Xuhua He, Jing-Song Huang, Toshiyuki Kobayashi, Bertram Kostant, Wenjing Li, George Lusztig, Eric Marberg, William M. McGovern, Wilfried Schmid, Kari Vilonen, Diana Shelstad, Peter E. Trapa, David A. Vogan, Jr., Nolan R. Wallach, Xiaoheng Wang, Geordie Williamson. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
700 1 |a Nevins, Monica.  |e editor. 
700 1 |a Trapa, Peter E.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319234427 
830 0 |a Progress in Mathematics,  |x 0743-1643 ;  |v 312 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-23443-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)