Technical Analysis for Algorithmic Pattern Recognition

The main purpose of this book is to resolve deficiencies and limitations that currently exist when using Technical Analysis (TA). Particularly, TA is being used either by academics as an “economic test” of the weak-form Efficient Market Hypothesis (EMH) or by practitioners as a main or supplementary...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Tsinaslanidis, Prodromos E. (Συγγραφέας), Zapranis, Achilleas D. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03172nam a22005295i 4500
001 978-3-319-23636-0
003 DE-He213
005 20170520141602.0
007 cr nn 008mamaa
008 151030s2016 gw | s |||| 0|eng d
020 |a 9783319236360  |9 978-3-319-23636-0 
024 7 |a 10.1007/978-3-319-23636-0  |2 doi 
040 |d GrThAP 
050 4 |a HG1-HG9999 
072 7 |a KFF  |2 bicssc 
072 7 |a BUS027000  |2 bisacsh 
082 0 4 |a 332  |2 23 
100 1 |a Tsinaslanidis, Prodromos E.  |e author. 
245 1 0 |a Technical Analysis for Algorithmic Pattern Recognition  |h [electronic resource] /  |c by Prodromos E. Tsinaslanidis, Achilleas D. Zapranis. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIV, 204 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Technical Analysis -- Preprocessing Procedures -- Assessing the Predictive Performance of Technical Analysis -- Horizontal Patterns -- Zigzag Patterns -- Circular Patterns -- Technical Indicators -- A Statistical Assessment -- Dynamic Time Warping for Pattern Recognition. 
520 |a The main purpose of this book is to resolve deficiencies and limitations that currently exist when using Technical Analysis (TA). Particularly, TA is being used either by academics as an “economic test” of the weak-form Efficient Market Hypothesis (EMH) or by practitioners as a main or supplementary tool for deriving trading signals. This book approaches TA in a systematic way utilizing all the available estimation theory and tests. This is achieved through the developing of novel rule-based pattern recognizers, and the implementation of statistical tests for assessing the importance of realized returns. More emphasis is given to technical patterns where subjectivity in their identification process is apparent. Our proposed methodology is based on the algorithmic and thus unbiased pattern recognition. The unified methodological framework presented in this book can serve as a benchmark for both future academic studies that test the null hypothesis of the weak-form EMH and for practitioners that want to embed TA within their trading/investment decision making processes.     . 
650 0 |a Finance. 
650 0 |a Pattern recognition. 
650 0 |a Economics, Mathematical. 
650 0 |a Statistics. 
650 0 |a Econometrics. 
650 0 |a Macroeconomics. 
650 1 4 |a Finance. 
650 2 4 |a Finance, general. 
650 2 4 |a Econometrics. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Macroeconomics/Monetary Economics//Financial Economics. 
700 1 |a Zapranis, Achilleas D.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319236353 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-23636-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ECF 
950 |a Economics and Finance (Springer-41170)