Sentic Computing A Common-Sense-Based Framework for Concept-Level Sentiment Analysis /

This volume presents a knowledge-based approach to concept-level sentiment analysis at the crossroads between affective computing, information extraction, and common-sense computing, which exploits both computer and social sciences to better interpret and process information on the Web. Concept-leve...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cambria, Erik (Συγγραφέας), Hussain, Amir (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Socio-Affective Computing ; 1
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03326nam a22005295i 4500
001 978-3-319-23654-4
003 DE-He213
005 20151210190854.0
007 cr nn 008mamaa
008 151210s2015 gw | s |||| 0|eng d
020 |a 9783319236544  |9 978-3-319-23654-4 
024 7 |a 10.1007/978-3-319-23654-4  |2 doi 
040 |d GrThAP 
050 4 |a RC321-580 
072 7 |a PSAN  |2 bicssc 
072 7 |a MED057000  |2 bisacsh 
082 0 4 |a 612.8  |2 23 
100 1 |a Cambria, Erik.  |e author. 
245 1 0 |a Sentic Computing  |h [electronic resource] :  |b A Common-Sense-Based Framework for Concept-Level Sentiment Analysis /  |c by Erik Cambria, Amir Hussain. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XXII, 176 p. 54 illus., 40 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Socio-Affective Computing ;  |v 1 
505 0 |a Introduction -- SenticNet -- Sentic Patterns -- Sentic Applications -- Conclusion -- Index. 
520 |a This volume presents a knowledge-based approach to concept-level sentiment analysis at the crossroads between affective computing, information extraction, and common-sense computing, which exploits both computer and social sciences to better interpret and process information on the Web. Concept-level sentiment analysis goes beyond a mere word-level analysis of text in order to enable a more efficient passage from (unstructured) textual information to (structured) machine-processable data, in potentially any domain. Readers will discover the following key novelties, that make this approach so unique and avant-garde, being reviewed and discussed: •    Sentic Computing's multi-disciplinary approach to sentiment  analysis-evidenced by the concomitant use of AI, linguistics and psychology for knowledge representation and inference •    Sentic Computing’s shift from syntax to semantics-enabled by the adoption of the bag-of-concepts model instead of simply counting word co-occurrence frequencies in text •    Sentic Computing's shift from statistics to linguistics-implemented by allowing sentiments to flow from concept to concept based on the dependency relation between clauses This volume is the first in the Series Socio-Affective Computing edited by Dr Amir Hussain  and Dr Erik Cambria and will be of interest to researchers in the fields of socially intelligent, affective and multimodal human-machine interaction and systems. 
650 0 |a Medicine. 
650 0 |a Neurosciences. 
650 0 |a Data mining. 
650 0 |a Semantics. 
650 0 |a Cognitive psychology. 
650 1 4 |a Biomedicine. 
650 2 4 |a Neurosciences. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Semantics. 
650 2 4 |a Cognitive Psychology. 
700 1 |a Hussain, Amir.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319236537 
830 0 |a Socio-Affective Computing ;  |v 1 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-23654-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)