Rule Based Systems for Big Data A Machine Learning Approach /

The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evalu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Liu, Han (Συγγραφέας), Gegov, Alexander (Συγγραφέας), Cocea, Mihaela (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:1st ed. 2015.
Σειρά:Studies in Big Data, 13
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02763nam a22005175i 4500
001 978-3-319-23696-4
003 DE-He213
005 20151204190928.0
007 cr nn 008mamaa
008 150909s2016 gw | s |||| 0|eng d
020 |a 9783319236964  |9 978-3-319-23696-4 
024 7 |a 10.1007/978-3-319-23696-4  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Liu, Han.  |e author. 
245 1 0 |a Rule Based Systems for Big Data  |h [electronic resource] :  |b A Machine Learning Approach /  |c by Han Liu, Alexander Gegov, Mihaela Cocea. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 121 p. 38 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 13 
505 0 |a Introduction -- Theoretical Preliminaries -- Generation of Classification Rules -- Simplification of Classification Rules -- Representation of Classification Rules -- Ensemble Learning Approaches -- Interpretability Analysis. 
520 |a The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems. 
650 0 |a Engineering. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Gegov, Alexander.  |e author. 
700 1 |a Cocea, Mihaela.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319236957 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 13 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-23696-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)