Measures of Symmetry for Convex Sets and Stability

This textbook treats two important and related matters in convex geometry: the quantification of symmetry of a convex set—measures of symmetry—and the degree to which convex sets that nearly minimize such measures of symmetry are themselves nearly symmetric—the phenomenon of stability. By gathering...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Toth, Gabor (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03762nam a22004935i 4500
001 978-3-319-23733-6
003 DE-He213
005 20151126121816.0
007 cr nn 008mamaa
008 151126s2015 gw | s |||| 0|eng d
020 |a 9783319237336  |9 978-3-319-23733-6 
024 7 |a 10.1007/978-3-319-23733-6  |2 doi 
040 |d GrThAP 
050 4 |a QA639.5-640.7 
050 4 |a QA640.7-640.77 
072 7 |a PBMW  |2 bicssc 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT012020  |2 bisacsh 
072 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 516.1  |2 23 
100 1 |a Toth, Gabor.  |e author. 
245 1 0 |a Measures of Symmetry for Convex Sets and Stability  |h [electronic resource] /  |c by Gabor Toth. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 278 p. 65 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a First Things First on Convex Sets -- Affine Diameters and the Critical Set -- Measures of Stability and Symmetry -- Mean Minkowski Measures. 
520 |a This textbook treats two important and related matters in convex geometry: the quantification of symmetry of a convex set—measures of symmetry—and the degree to which convex sets that nearly minimize such measures of symmetry are themselves nearly symmetric—the phenomenon of stability. By gathering the subject’s core ideas and highlights around Grünbaum’s general notion of measure of symmetry, it paints a coherent picture of the subject, and guides the reader from the basics to the state-of-the-art. The exposition takes various paths to results in order to develop the reader’s grasp of the unity of ideas, while interspersed remarks enrich the material with a behind-the-scenes view of corollaries and logical connections, alternative proofs, and allied results from the literature. Numerous illustrations elucidate definitions and key constructions, and over 70 exercises—with hints and references for the more difficult ones—test and sharpen the reader’s comprehension. The presentation includes: a basic course covering foundational notions in convex geometry, the three pillars of the combinatorial theory (the theorems of Carathéodory, Radon, and Helly), critical sets and Minkowski measure, the Minkowski–Radon inequality, and, to illustrate the general theory, a study of convex bodies of constant width; two proofs of F. John’s ellipsoid theorem; a treatment of the stability of Minkowski measure, the Banach–Mazur metric, and Groemer’s stability estimate for the Brunn–Minkowski inequality; important specializations of Grünbaum’s abstract measure of symmetry, such as Winternitz measure, the Rogers–Shepard volume ratio, and Guo’s Lp -Minkowski measure; a construction by the author of a new sequence of measures of symmetry, the kth mean Minkowski measure; and lastly, an intriguing application to the moduli space of certain distinguished maps from a Riemannian homogeneous space to spheres—illustrating the broad mathematical relevance of the book’s subject. 
650 0 |a Mathematics. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Convex and Discrete Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319237329 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-23733-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)