p-Laplace Equation in the Heisenberg Group Regularity of Solutions /

This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter pres...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ricciotti, Diego (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02296nam a22004455i 4500
001 978-3-319-23790-9
003 DE-He213
005 20151228082549.0
007 cr nn 008mamaa
008 151228s2015 gw | s |||| 0|eng d
020 |a 9783319237909  |9 978-3-319-23790-9 
024 7 |a 10.1007/978-3-319-23790-9  |2 doi 
040 |d GrThAP 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 |a Ricciotti, Diego.  |e author. 
245 1 0 |a p-Laplace Equation in the Heisenberg Group  |h [electronic resource] :  |b Regularity of Solutions /  |c by Diego Ricciotti. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 87 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1 Introduction -- 2 The Heisenberg Group -- 3 The p-Laplace Equation -- 4 C1 regularity for the non-degenerate equation -- 5 Lipschitz Regularity. 
520 |a This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter presents the basic properties of the Heisenberg group, making the coverage self-contained. The setting is the first Heisenberg group, helping to keep the notation simple and allow the reader to focus on the core of the theory and techniques in the field. Further, detailed proofs make the work accessible to students at the graduate level. 
650 0 |a Mathematics. 
650 0 |a Differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319237893 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-23790-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)