Linear and Integer Programming Made Easy

Linear and integer programming are fundamental toolkits for data and information science and technology, particularly in the context of today’s megatrends toward statistical optimization, machine learning, and big data analytics. Drawn from over 30 years of classroom teaching and applied research ex...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hu, T. C. (Συγγραφέας), Kahng, Andrew B. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03431nam a22004935i 4500
001 978-3-319-24001-5
003 DE-He213
005 20170308021131.0
007 cr nn 008mamaa
008 160503s2016 gw | s |||| 0|eng d
020 |a 9783319240015  |9 978-3-319-24001-5 
024 7 |a 10.1007/978-3-319-24001-5  |2 doi 
040 |d GrThAP 
050 4 |a TK7888.4 
072 7 |a TJFC  |2 bicssc 
072 7 |a TEC008010  |2 bisacsh 
082 0 4 |a 621.3815  |2 23 
100 1 |a Hu, T. C.  |e author. 
245 1 0 |a Linear and Integer Programming Made Easy  |h [electronic resource] /  |c by T. C. Hu, Andrew B. Kahng. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 143 p. 24 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preliminaries -- Introduction -- Dimension of the Solution Space -- Introduction to the Simplex Method -- Duality and Complementary Slackness -- Revised Simplex Method -- Column Generating Technique -- The Knapsack Problem -- Asymptotic Algorithms -- The World Map of Integer Programs -- Linear and Integer Programming in Practice. 
520 |a Linear and integer programming are fundamental toolkits for data and information science and technology, particularly in the context of today’s megatrends toward statistical optimization, machine learning, and big data analytics. Drawn from over 30 years of classroom teaching and applied research experience, this textbook provides a crisp and practical introduction to the basics of linear and integer programming. The authors’ approach is accessible to students from all fields of engineering, including operations research, statistics, machine learning, control system design, scheduling, formal verification, and computer vision. Readers will learn to cast hard combinatorial problems as mathematical programming optimizations, understand how to achieve formulations where the objective and constraints are linear, choose appropriate solution methods, and interpret results appropriately. •Provides a concise introduction to linear and integer programming, appropriate for undergraduates, graduates, a short course or boot camp, or self-learning; •Targets not only computer scientists and engineers, but those in management science and operations research as well; •Emphasizes basics and intuitive concepts, and gives corresponding numerical examples; •Includes exercises to test and reinforce the concepts introduced, along with a website containing additional material matched to the book’s contents. 
650 0 |a Engineering. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Electronic circuits. 
650 1 4 |a Engineering. 
650 2 4 |a Circuits and Systems. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Kahng, Andrew B.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319239996 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-24001-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)