Arithmetically Cohen-Macaulay Sets of Points in P^1 x P^1

This brief presents a solution to the interpolation problem for arithmetically Cohen-Macaulay (ACM) sets of points in the multiprojective space P^1 x P^1.  It collects the various current threads in the literature on this topic with the aim of providing a self-contained, unified introduction while a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Guardo, Elena (Συγγραφέας), Van Tuyl, Adam (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03227nam a22005175i 4500
001 978-3-319-24166-1
003 DE-He213
005 20151127021343.0
007 cr nn 008mamaa
008 151125s2015 gw | s |||| 0|eng d
020 |a 9783319241661  |9 978-3-319-24166-1 
024 7 |a 10.1007/978-3-319-24166-1  |2 doi 
040 |d GrThAP 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.44  |2 23 
100 1 |a Guardo, Elena.  |e author. 
245 1 0 |a Arithmetically Cohen-Macaulay Sets of Points in P^1 x P^1  |h [electronic resource] /  |c by Elena Guardo, Adam Van Tuyl. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VIII, 134 p. 25 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a Introduction -- The Biprojective Space P^1 x P^1 -- Points in P^1 x P^1 -- Classification of ACM Sets of Points in P^1 x P^1 -- Homological Invariants -- Fat Points in P^1 x P^1 -- Double Points and Their Resolution -- Applications -- References. 
520 |a This brief presents a solution to the interpolation problem for arithmetically Cohen-Macaulay (ACM) sets of points in the multiprojective space P^1 x P^1.  It collects the various current threads in the literature on this topic with the aim of providing a self-contained, unified introduction while also advancing some new ideas.  The relevant constructions related to multiprojective spaces are reviewed first, followed by the basic properties of points in P^1 x P^1, the bigraded Hilbert function, and ACM sets of points.  The authors then show how, using a combinatorial description of ACM points in P^1 x P^1, the bigraded Hilbert function can be computed and, as a result, solve the interpolation problem.  In subsequent chapters, they consider fat points and double points in P^1 x P^1 and demonstrate how to use their results to answer questions and problems of interest in commutative algebra.  Throughout the book, chapters end with a brief historical overview, citations of related results, and, where relevant, open questions that may inspire future research.  Graduate students and researchers working in algebraic geometry and commutative algebra will find this book to be a valuable contribution to the literature. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Projective geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Projective Geometry. 
700 1 |a Van Tuyl, Adam.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319241647 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-24166-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)