Maximum Principles and Geometric Applications
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In partic...
Κύριοι συγγραφείς: | Alías, Luis J. (Συγγραφέας), Mastrolia, Paolo (Συγγραφέας), Rigoli, Marco (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Έκδοση: | 1st ed. 2016. |
Σειρά: | Springer Monographs in Mathematics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
The Dirac Spectrum
ανά: Ginoux, Nicolas
Έκδοση: (2009) -
Analysis and Geometry MIMS-GGTM, Tunis, Tunisia, March 2014. In Honour of Mohammed Salah Baouendi /
Έκδοση: (2015) -
Covariant Schrödinger Semigroups on Riemannian Manifolds
ανά: Güneysu, Batu
Έκδοση: (2017) -
The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator
ανά: Duistermaat, J. J.
Έκδοση: (2011) -
The Ricci Flow in Riemannian Geometry A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem /
ανά: Andrews, Ben, κ.ά.
Έκδοση: (2011)