A Concise Introduction to Analysis

This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables. Considerable space is given to developing Riemann integration theor...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Stroock, Daniel W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03213nam a22005175i 4500
001 978-3-319-24469-3
003 DE-He213
005 20170123141746.0
007 cr nn 008mamaa
008 151030s2015 gw | s |||| 0|eng d
020 |a 9783319244693  |9 978-3-319-24469-3 
024 7 |a 10.1007/978-3-319-24469-3  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Stroock, Daniel W.  |e author. 
245 1 2 |a A Concise Introduction to Analysis  |h [electronic resource] /  |c by Daniel W. Stroock. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 218 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Analysis on The Real Line -- Elements of Complex Analysis -- Integration -- Higher Dimensions -- Integration in Higher Dimensions -- A Little Bit of Analytic Function Theory. 
520 |a This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables. Considerable space is given to developing Riemann integration theory in higher dimensions, including a rigorous treatment of Fubini's theorem, polar coordinates and the divergence theorem. These are used in the final chapter to derive Cauchy's formula, which is then applied to prove some of the basic properties of analytic functions. Among the unusual features of this book is the treatment of analytic function theory as an application of ideas and results in real analysis. For instance, Cauchy's integral formula for analytic functions is derived as an application of the divergence theorem. The last section of each chapter is devoted to exercises that should be viewed as an integral part of the text. A Concise Introduction to Analysis should appeal to upper level undergraduate mathematics students, graduate students in fields where mathematics is used, as well as to those wishing to supplement their mathematical education on their own. Wherever possible, an attempt has been made to give interesting examples that demonstrate how the ideas are used and why it is important to have a rigorous grasp of them. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Integral equations. 
650 0 |a Functions of real variables. 
650 0 |a Sequences (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Real Functions. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Integral Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319244679 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-24469-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)