The Automated Design of Materials Far From Equilibrium

This thesis conceptualizes and implements a new framework for designing materials that are far from equilibrium. Starting with state-of-the-art optimization engines, it describes an automated system that makes use of simulations and 3D printing to find the material that best performs a user-specifie...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Miskin, Marc Z. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03443nam a22005655i 4500
001 978-3-319-24621-5
003 DE-He213
005 20170519184449.0
007 cr nn 008mamaa
008 151113s2016 gw | s |||| 0|eng d
020 |a 9783319246215  |9 978-3-319-24621-5 
024 7 |a 10.1007/978-3-319-24621-5  |2 doi 
040 |d GrThAP 
050 4 |a QC176.8.A44 
072 7 |a PHF  |2 bicssc 
072 7 |a SCI085000  |2 bisacsh 
072 7 |a SCI077000  |2 bisacsh 
082 0 4 |a 530.41  |2 23 
100 1 |a Miskin, Marc Z.  |e author. 
245 1 4 |a The Automated Design of Materials Far From Equilibrium  |h [electronic resource] /  |c by Marc Z. Miskin. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIX, 89 p. 39 illus., 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- Artificial Evolution -- Optimization -- Inverse Problems -- Transition of Designs -- Online Design -- Conclusions. 
520 |a This thesis conceptualizes and implements a new framework for designing materials that are far from equilibrium. Starting with state-of-the-art optimization engines, it describes an automated system that makes use of simulations and 3D printing to find the material that best performs a user-specified goal. Identifying which microscopic features produce a desired macroscopic behavior is a problem at the forefront of materials science. This task is materials design, and within it, new goals and challenges have emerged from tailoring the response of materials far from equilibrium. These materials hold promising properties such as robustness, high strength, and self-healing. Yet without a general theory to predict how these properties emerge, designing and controlling them presents a complex and important problem. As proof of concept, the thesis shows how to design the behavior of granular materials, i.e., collections of athermal, macroscopic identical objects, by identifying the particle shapes that form the stiffest, softest, densest, loosest, most dissipative and strain-stiffening aggregates. More generally, the thesis shows how these results serve as prototypes for problems at the heart of materials design, and advocates the perspective that machines are the key to turning complex material forms into new material functions. 
650 0 |a Physics. 
650 0 |a Amorphous substances. 
650 0 |a Complex fluids. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Engineering design. 
650 0 |a Engineering  |x Materials. 
650 0 |a Structural materials. 
650 1 4 |a Physics. 
650 2 4 |a Soft and Granular Matter, Complex Fluids and Microfluidics. 
650 2 4 |a Structural Materials. 
650 2 4 |a Engineering Design. 
650 2 4 |a Materials Engineering. 
650 2 4 |a Theoretical and Applied Mechanics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319246192 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-24621-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)