Metastability A Potential-Theoretic Approach /

Metastability is a wide-spread phenomenon in the dynamics of non-linear systems - physical, chemical, biological or economic - subject to the action of temporal random forces typically referred to as noise. This monograph provides a concise presentation of mathematical approach to metastability base...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bovier, Anton (Συγγραφέας), den Hollander, Frank (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 351
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04446nam a22005175i 4500
001 978-3-319-24777-9
003 DE-He213
005 20160331042737.0
007 cr nn 008mamaa
008 160211s2015 gw | s |||| 0|eng d
020 |a 9783319247779  |9 978-3-319-24777-9 
024 7 |a 10.1007/978-3-319-24777-9  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Bovier, Anton.  |e author. 
245 1 0 |a Metastability  |h [electronic resource] :  |b A Potential-Theoretic Approach /  |c by Anton Bovier, Frank den Hollander. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XXI, 581 p. 96 illus., 82 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 351 
505 0 |a Part I Introduction -- 1.Background and motivation -- 2.Aims and scopes -- Part II Markov processes 3.Some basic notions from probability theory -- 4.Markov processes in discrete time.- 5.Markov processes in continuous time -- 6.Large deviations -- 7.Potential theory -- Part III Metastability -- 8.Key definitions and basic properties -- 9.Basic techniques -- Part IV Applications: Diffusions with small noise -- 10.Discrete reversible diffusions -- 11.Diffusion processes with gradient drift -- 12.Stochastic partial differential equations -- Part V Applications: Coarse-graining at positive temperatures -- 13.The Curie-Weiss model -- 14.The Curie-Weiss model with a random magnetic field: discrete distributions -- 15.The Curie-Weiss model with random magnetic field: continuous distributions -- Part VI Applications: Lattice systems in small volumes at low temperatures -- 16.Abstract set-up and metastability in the zero-temperature limit -- 17.Glauber dynamics -- 18.Kawasaki dynamics -- Part VII Applications: Lattice systems in large volumes at low temperatures -- 19.Glauber dynamics -- 20.Kawasaki dynamics -- Part VIII Applications: Lattice systems in small volumes at high densities -- 21.The zero-range process -- Part IX Challenges -- 22.Challenges within metastability -- 23.Challenges beyond metastability -- References.-Glossary -- Index.  . 
520 |a Metastability is a wide-spread phenomenon in the dynamics of non-linear systems - physical, chemical, biological or economic - subject to the action of temporal random forces typically referred to as noise. This monograph provides a concise presentation of mathematical approach to metastability based on potential theory of reversible Markov processes. The authors shed new light on the metastability phenomenon as a sequence of visits of the path of the process to different metastable sets, and focus on the precise analysis of the respective hitting probabilities and hitting times of these sets. The theory is illustrated with many examples, ranging from finite-state Markov chains, finite-dimensional diffusions and stochastic partial differential equations, via mean-field dynamics with and without disorder, to stochastic spin-flip and particle-hopping dynamics and probabilistic cellular automata, unveiling the common universal features of these systems with respect to their metastable behaviour. The monograph will serve both as comprehensive introduction and as reference for graduate students and researchers interested in metastability. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Mathematical physics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a den Hollander, Frank.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319247755 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 351 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-24777-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)