Markov Chain Aggregation for Agent-Based Models

This self-contained text develops a Markov chain approach that makes the rigorous analysis of a class of microscopic models that specify the dynamics of complex systems at the individual level possible. It presents a general framework of aggregation in agent-based and related computational models, o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Banisch, Sven (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Understanding Complex Systems,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03547nam a22004935i 4500
001 978-3-319-24877-6
003 DE-He213
005 20170518060159.0
007 cr nn 008mamaa
008 151221s2016 gw | s |||| 0|eng d
020 |a 9783319248776  |9 978-3-319-24877-6 
024 7 |a 10.1007/978-3-319-24877-6  |2 doi 
040 |d GrThAP 
050 4 |a QC174.7-175.36 
072 7 |a PBWR  |2 bicssc 
072 7 |a PHDT  |2 bicssc 
072 7 |a SCI012000  |2 bisacsh 
082 0 4 |a 621  |2 23 
100 1 |a Banisch, Sven.  |e author. 
245 1 0 |a Markov Chain Aggregation for Agent-Based Models  |h [electronic resource] /  |c by Sven Banisch. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIV, 195 p. 83 illus., 18 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Understanding Complex Systems,  |x 1860-0832 
505 0 |a Introduction -- Background and Concepts -- Agent-based Models as Markov Chains -- The Voter Model with Homogeneous Mixing -- From Network Symmetries to Markov Projections -- Application to the Contrarian Voter Model -- Information-Theoretic Measures for the Non-Markovian Case -- Overlapping Versus Non-Overlapping Generations -- Aggretion and Emergence: A Synthesis -- Conclusion. 
520 |a This self-contained text develops a Markov chain approach that makes the rigorous analysis of a class of microscopic models that specify the dynamics of complex systems at the individual level possible. It presents a general framework of aggregation in agent-based and related computational models, one which makes use of lumpability and information theory in order to link the micro and macro levels of observation. The starting point is a microscopic Markov chain description of the dynamical process in complete correspondence with the dynamical behavior of the agent-based model (ABM), which is obtained by considering the set of all possible agent configurations as the state space of a huge Markov chain. An explicit formal representation of a resulting “micro-chain” including microscopic transition rates is derived for a class of models by using the random mapping representation of a Markov process. The type of probability distribution used to implement the stochastic part of the model, which defines the updating rule and governs the dynamics at a Markovian level, plays a crucial part in the analysis of “voter-like” models used in population genetics, evolutionary game theory and social dynamics. The book demonstrates that the problem of aggregation in ABMs - and the lumpability conditions in particular - can be embedded into a more general framework that employs information theory in order to identify different levels and relevant scales in complex dynamical systems. 
650 0 |a Physics. 
650 0 |a System theory. 
650 0 |a Complexity, Computational. 
650 1 4 |a Physics. 
650 2 4 |a Applications of Nonlinear Dynamics and Chaos Theory. 
650 2 4 |a Complex Systems. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Complexity. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319248752 
830 0 |a Understanding Complex Systems,  |x 1860-0832 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-24877-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)