|
|
|
|
LEADER |
03243nam a22004935i 4500 |
001 |
978-3-319-24999-5 |
003 |
DE-He213 |
005 |
20160813154419.0 |
007 |
cr nn 008mamaa |
008 |
160813s2017 gw | s |||| 0|eng d |
020 |
|
|
|a 9783319249995
|9 978-3-319-24999-5
|
024 |
7 |
|
|a 10.1007/978-3-319-24999-5
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a TA405-409.3
|
050 |
|
4 |
|a QA808.2
|
072 |
|
7 |
|a TG
|2 bicssc
|
072 |
|
7 |
|a TEC009070
|2 bisacsh
|
072 |
|
7 |
|a TEC021000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.1
|2 23
|
100 |
1 |
|
|a Perez, Nestor.
|e author.
|
245 |
1 |
0 |
|a Fracture Mechanics
|h [electronic resource] /
|c by Nestor Perez.
|
250 |
|
|
|a 2nd ed. 2017.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2017.
|
300 |
|
|
|a XIV, 418 p. 205 illus., 179 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a Theory of Elasticity -- Introduction to Fracture Mechanics -- Linear-Elastic Fracture Mechanics -- Linear-Elastic Field Equations -- Crack Tip Plasticity -- The Energy Principle -- Elastic-Plastic Fracture Mechanics -- Mixed-Mode Fracture Mechanics -- Fatigue Crack Growth -- Fracture Toughness Correlations.-.
|
520 |
|
|
|a The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understanding with theoretical concepts and detailed treatments of formula derivation; Presents analytical methods for deriving stress and strain functions related to fracture mechanics; Reinforces concepts and modeling techniques with example problems that support comprehension and application of a particular theory.
|
650 |
|
0 |
|a Engineering.
|
650 |
|
0 |
|a Continuum mechanics.
|
650 |
|
0 |
|a Structural mechanics.
|
650 |
|
0 |
|a Materials science.
|
650 |
1 |
4 |
|a Engineering.
|
650 |
2 |
4 |
|a Continuum Mechanics and Mechanics of Materials.
|
650 |
2 |
4 |
|a Structural Mechanics.
|
650 |
2 |
4 |
|a Characterization and Evaluation of Materials.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319249971
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-319-24999-5
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-ENG
|
950 |
|
|
|a Engineering (Springer-11647)
|