Data Mining for Social Robotics Toward Autonomously Social Robots /

This book explores an approach to social robotics based solely on autonomous unsupervised techniques and positions it within a structured exposition of related research in psychology, neuroscience, HRI, and data mining. The authors present an autonomous and developmental approach that allows the rob...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mohammad, Yasser (Συγγραφέας), Nishida, Toyoaki (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Advanced Information and Knowledge Processing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03496nam a22004935i 4500
001 978-3-319-25232-2
003 DE-He213
005 20160110021504.0
007 cr nn 008mamaa
008 160108s2015 gw | s |||| 0|eng d
020 |a 9783319252322  |9 978-3-319-25232-2 
024 7 |a 10.1007/978-3-319-25232-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Mohammad, Yasser.  |e author. 
245 1 0 |a Data Mining for Social Robotics  |h [electronic resource] :  |b Toward Autonomously Social Robots /  |c by Yasser Mohammad, Toyoaki Nishida. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 328 p. 74 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Information and Knowledge Processing,  |x 1610-3947 
505 0 |a Preface -- Introduction -- Part I: Time Series Mining -- Mining Time-Series Data -- Change Point Discovery -- Motif Discovery -- Causality Analysis -- Part II: Autonomously Social Robots -- Introduction to Social Robotics -- Imitation and Social Robotics -- Theoretical Foundations -- The Embodied Interactive Control Architecture -- Interacting Naturally -- Interaction Learning through Imitation -- Fluid Imitation -- Learning through Demonstration -- Conclusion -- Index. 
520 |a This book explores an approach to social robotics based solely on autonomous unsupervised techniques and positions it within a structured exposition of related research in psychology, neuroscience, HRI, and data mining. The authors present an autonomous and developmental approach that allows the robot to learn interactive behavior by imitating humans using algorithms from time-series analysis and machine learning. The first part provides a comprehensive and structured introduction to time-series analysis, change point discovery, motif discovery and causality analysis focusing on possible applicability to HRI problems. Detailed explanations of all the algorithms involved are provided with open-source implementations in MATLAB enabling the reader to experiment with them. Imitation and simulation are the key technologies used to attain social behavior autonomously in the proposed approach. Part two gives the reader a wide overview of research in these areas in psychology, and ethology. Based on this background, the authors discuss approaches to endow robots with the ability to autonomously learn how to be social. Data Mining for Social Robots will be essential reading for graduate students and practitioners interested in social and developmental robotics. . 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Nishida, Toyoaki.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319252308 
830 0 |a Advanced Information and Knowledge Processing,  |x 1610-3947 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-25232-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)