Prominent Feature Extraction for Sentiment Analysis

The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Agarwal, Basant (Συγγραφέας), Mittal, Namita (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Socio-Affective Computing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03985nam a22005535i 4500
001 978-3-319-25343-5
003 DE-He213
005 20170518163619.0
007 cr nn 008mamaa
008 151214s2016 gw | s |||| 0|eng d
020 |a 9783319253435  |9 978-3-319-25343-5 
024 7 |a 10.1007/978-3-319-25343-5  |2 doi 
040 |d GrThAP 
050 4 |a RC321-580 
072 7 |a PSAN  |2 bicssc 
072 7 |a MED057000  |2 bisacsh 
082 0 4 |a 612.8  |2 23 
100 1 |a Agarwal, Basant.  |e author. 
245 1 0 |a Prominent Feature Extraction for Sentiment Analysis  |h [electronic resource] /  |c by Basant Agarwal, Namita Mittal. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIX, 103 p. 10 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Socio-Affective Computing,  |x 2509-5706 
505 0 |a Introduction -- Literature Survey -- Machine Learning Approach for Sentiment Analysis -- Semantic Parsing using Dependency Rules -- Sentiment Analysis using ConceptNet Ontology and Context Information -- Semantic Orientation based Approach for Sentiment Analysis -- Conclusions and FutureWork -- References -- Glossary -- Index. 
520 |a The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model. Authors pay attention to the four main findings of the book : -Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features. - Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique performs better than Support Vector Machine (SVM) classifier for sentiment analysis. - The problem of data sparseness is alleviated by semantic clustering of features, which in turn improves the performance of the sentiment analysis. -Semantic relations among the words in the text have useful cues for sentiment analysis. Common-sense knowledge in form of ConceptNet ontology acquires knowledge, which provides a better understanding of the text that improves the performance of the sentiment analysis. 
650 0 |a Medicine. 
650 0 |a Neurosciences. 
650 0 |a Data mining. 
650 0 |a Text processing (Computer science). 
650 0 |a Application software. 
650 0 |a Computational linguistics. 
650 1 4 |a Biomedicine. 
650 2 4 |a Neurosciences. 
650 2 4 |a Document Preparation and Text Processing. 
650 2 4 |a Computational Linguistics. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences. 
700 1 |a Mittal, Namita.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319253411 
830 0 |a Socio-Affective Computing,  |x 2509-5706 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-25343-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)