Lectures on the Nearest Neighbor Method

This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzi...

Full description

Bibliographic Details
Main Authors: Biau, Gérard (Author), Devroye, Luc (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Springer Series in the Data Sciences,
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03132nam a22005295i 4500
001 978-3-319-25388-6
003 DE-He213
005 20160530141111.0
007 cr nn 008mamaa
008 151208s2015 gw | s |||| 0|eng d
020 |a 9783319253886  |9 978-3-319-25388-6 
024 7 |a 10.1007/978-3-319-25388-6  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Biau, Gérard.  |e author. 
245 1 0 |a Lectures on the Nearest Neighbor Method  |h [electronic resource] /  |c by Gérard Biau, Luc Devroye. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a IX, 290 p. 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in the Data Sciences,  |x 2365-5674 
505 0 |a Part I: Density Estimation -- Order Statistics and Nearest Neighbors -- The Expected Nearest Neighbor Distance -- The k-nearest Neighbor Density Estimate -- Uniform Consistency -- Weighted k-nearest neighbor density estimates.- Local Behavior -- Entropy Estimation -- Part II: Regression Estimation -- The Nearest Neighbor Regression Function Estimate -- The 1-nearest Neighbor Regression Function Estimate -- LP-consistency and Stone's Theorem -- Pointwise Consistency -- Uniform Consistency -- Advanced Properties of Uniform Order Statistics -- Rates of Convergence -- Regression: The Noisless Case -- The Choice of a Nearest Neighbor Estimate -- Part III: Supervised Classification -- Basics of Classification -- The 1-nearest Neighbor Classification Rule -- The Nearest Neighbor Classification Rule. Appendix -- Index. 
520 |a This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods. Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).   . 
650 0 |a Mathematics. 
650 0 |a Pattern recognition. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
700 1 |a Devroye, Luc.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319253862 
830 0 |a Springer Series in the Data Sciences,  |x 2365-5674 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-25388-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)