|
|
|
|
LEADER |
03465nam a22005535i 4500 |
001 |
978-3-319-25607-8 |
003 |
DE-He213 |
005 |
20160727193931.0 |
007 |
cr nn 008mamaa |
008 |
160222s2016 gw | s |||| 0|eng d |
020 |
|
|
|a 9783319256078
|9 978-3-319-25607-8
|
024 |
7 |
|
|a 10.1007/978-3-319-25607-8
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QC176-176.9
|
072 |
|
7 |
|a PNFS
|2 bicssc
|
072 |
|
7 |
|a SCI077000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.41
|2 23
|
100 |
1 |
|
|a Asbóth, János K.
|e author.
|
245 |
1 |
2 |
|a A Short Course on Topological Insulators
|h [electronic resource] :
|b Band Structure and Edge States in One and Two Dimensions /
|c by János K. Asbóth, László Oroszlány, András Pályi.
|
250 |
|
|
|a 1st ed. 2016.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2016.
|
300 |
|
|
|a XIII, 166 p. 44 illus., 23 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Physics,
|x 0075-8450 ;
|v 919
|
505 |
0 |
|
|a The Su-Schrieffer-Heeger (SSH) model -- Berry phase, Chern Number -- Polarization and Berry Phase -- Adiabatic charge pumping, Rice-Mele model -- Current operator and particle pumping -- Two-dimensional Chern insulators – the Qi-Wu-Zhang model -- Continuum model of localized states at a domain wall -- Time-reversal symmetric two-dimensional topological insulators – the Bernevig–Hughes–Zhang model.-The Z2 invariant of two-dimensional topological insulators -- Electrical conduction of edge states. .
|
520 |
|
|
|a This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.
|
650 |
|
0 |
|a Physics.
|
650 |
|
0 |
|a Solid state physics.
|
650 |
|
0 |
|a Magnetism.
|
650 |
|
0 |
|a Magnetic materials.
|
650 |
|
0 |
|a Semiconductors.
|
650 |
1 |
4 |
|a Physics.
|
650 |
2 |
4 |
|a Solid State Physics.
|
650 |
2 |
4 |
|a Mathematical Methods in Physics.
|
650 |
2 |
4 |
|a Magnetism, Magnetic Materials.
|
650 |
2 |
4 |
|a Semiconductors.
|
700 |
1 |
|
|a Oroszlány, László.
|e author.
|
700 |
1 |
|
|a Pályi, András.
|e author.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319256054
|
830 |
|
0 |
|a Lecture Notes in Physics,
|x 0075-8450 ;
|v 919
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-319-25607-8
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-PHA
|
912 |
|
|
|a ZDB-2-LNP
|
950 |
|
|
|a Physics and Astronomy (Springer-11651)
|