Quantum Mechanics in Matrix Form

This book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of Schrödinger's wave mechanics is given (in most b...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ludyk, Günter (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03139nam a2200493 4500
001 978-3-319-26366-3
003 DE-He213
005 20191220131202.0
007 cr nn 008mamaa
008 171026s2018 gw | s |||| 0|eng d
020 |a 9783319263663  |9 978-3-319-26366-3 
024 7 |a 10.1007/978-3-319-26366-3  |2 doi 
040 |d GrThAP 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
072 7 |a PHQ  |2 thema 
082 0 4 |a 530.12  |2 23 
100 1 |a Ludyk, Günter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantum Mechanics in Matrix Form  |h [electronic resource] /  |c by Günter Ludyk. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 214 p. 14 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface and Introduction -- Quantum Theory Before 1925 -- Heisenberg 1925 -- Expansion of the Matrices Method -- Observables and Uncertainty Relations -- Harmonic Oscillator -- Pauli and the Hydrogen Atom -- Spin -- Atoms in Electromagnetic Fields -- Systems of Several Particles -- Equivalence of Matrix with Wave Mechanics -- Relativistic Quantum Mechanics. 
520 |a This book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of Schrödinger's wave mechanics is given (in most books exclusively treated), to show their equivalence to Heisenberg's matrix  method. In the first part the historical development of Quantum theory by Planck, Bohr and Sommerfeld is sketched, followed by the ideas and methods of Heisenberg, Born and Jordan. Then Pauli's spin and exclusion principles are treated. Pauli's exclusion principle leads to the structure of atoms. Finally, Dirac´s relativistic quantum mechanics is shortly presented. Matrices and matrix equations are today easy to handle when implementing numerical algorithms using standard software as MAPLE and Mathematica. 
650 0 |a Quantum physics. 
650 0 |a Atomic structure  . 
650 0 |a Molecular structure . 
650 0 |a Physics. 
650 1 4 |a Quantum Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19080 
650 2 4 |a Atomic/Molecular Structure and Spectra.  |0 http://scigraph.springernature.com/things/product-market-codes/P24017 
650 2 4 |a Mathematical Methods in Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19013 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319263649 
776 0 8 |i Printed edition:  |z 9783319263656 
776 0 8 |i Printed edition:  |z 9783319799414 
856 4 0 |u https://doi.org/10.1007/978-3-319-26366-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)