Minimal Free Resolutions over Complete Intersections

This book introduces a theory of higher matrix factorizations for regular sequences and uses it to describe the minimal free resolutions of high syzygy modules over complete intersections. Such resolutions have attracted attention ever since the elegant construction of the minimal free resolution of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Eisenbud, David (Συγγραφέας), Peeva, Irena (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Σειρά:Lecture Notes in Mathematics, 2152
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02587nam a22005535i 4500
001 978-3-319-26437-0
003 DE-He213
005 20160308154911.0
007 cr nn 008mamaa
008 160308s2016 gw | s |||| 0|eng d
020 |a 9783319264370  |9 978-3-319-26437-0 
024 7 |a 10.1007/978-3-319-26437-0  |2 doi 
040 |d GrThAP 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.44  |2 23 
100 1 |a Eisenbud, David.  |e author. 
245 1 0 |a Minimal Free Resolutions over Complete Intersections  |h [electronic resource] /  |c by David Eisenbud, Irena Peeva. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 107 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2152 
520 |a This book introduces a theory of higher matrix factorizations for regular sequences and uses it to describe the minimal free resolutions of high syzygy modules over complete intersections. Such resolutions have attracted attention ever since the elegant construction of the minimal free resolution of the residue field by Tate in 1957. The theory extends the theory of matrix factorizations of a non-zero divisor, initiated by Eisenbud in 1980, which yields a description of the eventual structure of minimal free resolutions over a hypersurface ring. Matrix factorizations have had many other uses in a wide range of mathematical fields, from singularity theory to mathematical physics. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Peeva, Irena.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319264363 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2152 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-26437-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)