Modern Statistical Methods for HCI
This book critically reflects on current statistical methods used in Human-Computer Interaction (HCI) and introduces a number of novel methods to the reader. Covering many techniques and approaches for exploratory data analysis including effect and power calculations, experimental design, event his...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Έκδοση: | 1st ed. 2016. |
Σειρά: | Human–Computer Interaction Series,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- An Introduction to Modern Statistical Methods for HCI
- Part I: Getting Started With Data Analysis
- Getting started with [R]: A Brief Introduction
- Descriptive Statistics, Graphs, and Visualization
- Handling Missing Data
- Part II: Classical Null Hypothesis Significance Testing Done Properly
- Effect sizes and Power in HCI
- Using R for Repeated and Time-Series Observations
- Non-Parametric Statistics in Human-Computer Interaction
- Part III : Bayesian Inference
- Bayesian Inference
- Bayesian Testing of Constrained Hypothesis
- Part IV: Advanced Modeling in HCI
- Latent Variable Models
- Using Generalized Linear (Mixed) Models in HCI
- Mixture Models: Latent Profile and Latent Class Analysis
- Part V: Improving Statistical Practice in HCI
- Fair Statistical Communication in HCI
- Improving Statistical Practice in HCI.