Partial Differential Equations: Modeling, Analysis and Numerical Approximation

This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Le Dret, Hervé (Συγγραφέας), Lucquin, Brigitte (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Έκδοση:1st ed. 2016.
Σειρά:International Series of Numerical Mathematics, 168
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02939nam a22004575i 4500
001 978-3-319-27067-8
003 DE-He213
005 20160212152557.0
007 cr nn 008mamaa
008 160211s2016 gw | s |||| 0|eng d
020 |a 9783319270678  |9 978-3-319-27067-8 
024 7 |a 10.1007/978-3-319-27067-8  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Le Dret, Hervé.  |e author. 
245 1 0 |a Partial Differential Equations: Modeling, Analysis and Numerical Approximation  |h [electronic resource] /  |c by Hervé Le Dret, Brigitte Lucquin. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XI, 395 p. 140 illus., 21 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series of Numerical Mathematics,  |x 0373-3149 ;  |v 168 
505 0 |a Foreword -- Mathematical modeling and PDEs -- The finite difference method for elliptic problems -- A review of analysis -- The variational formulation of elliptic PDEs.-Variational approximation methods for elliptic PDEs -- The finite element method in dimension two -- The heat equation -- The finite difference method for the heat equation -- The wave equation -- The finite volume method -- Index -- References. 
520 |a This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems. . 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
700 1 |a Lucquin, Brigitte.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319270654 
830 0 |a International Series of Numerical Mathematics,  |x 0373-3149 ;  |v 168 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-27067-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)