Structural Pattern Recognition with Graph Edit Distance Approximation Algorithms and Applications /

This unique text/reference presents a thorough introduction to the field of structural pattern recognition, with a particular focus on graph edit distance (GED), one of the most flexible graph distance models available. The book also provides a detailed review of a diverse selection of novel methods...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Riesen, Kaspar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Advances in Computer Vision and Pattern Recognition,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03638nam a22004815i 4500
001 978-3-319-27252-8
003 DE-He213
005 20160525172330.0
007 cr nn 008mamaa
008 160109s2015 gw | s |||| 0|eng d
020 |a 9783319272528  |9 978-3-319-27252-8 
024 7 |a 10.1007/978-3-319-27252-8  |2 doi 
040 |d GrThAP 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.4  |2 23 
100 1 |a Riesen, Kaspar.  |e author. 
245 1 0 |a Structural Pattern Recognition with Graph Edit Distance  |h [electronic resource] :  |b Approximation Algorithms and Applications /  |c by Kaspar Riesen. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 158 p. 28 illus., 24 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
505 0 |a Part I: Foundations and Applications of Graph Edit Distance -- Introduction and Basic Concepts -- Graph Edit Distance -- Bipartite Graph Edit Distance -- Part II: Recent Developments and Research on Graph Edit Distance -- Improving the Distance Accuracy of Bipartite Graph Edit Distance -- Learning Exact Graph Edit Distance -- Speeding Up Bipartite Graph Edit Distance -- Conclusions and Future Work -- Appendix A: Experimental Evaluation of Sorted Beam Search -- Appendix B: Data Sets. 
520 |a This unique text/reference presents a thorough introduction to the field of structural pattern recognition, with a particular focus on graph edit distance (GED), one of the most flexible graph distance models available. The book also provides a detailed review of a diverse selection of novel methods related to GED, and concludes by suggesting possible avenues for future research. Topics and features: Formally introduces the concept of GED, and highlights the basic properties of this graph matching paradigm Describes a reformulation of GED to a quadratic assignment problem Illustrates how the quadratic assignment problem of GED can be reduced to a linear sum assignment problem Reviews strategies for reducing both the overestimation of the true edit distance and the matching time in the approximation framework Examines the improvement demonstrated by the described algorithmic framework with respect to the distance accuracy and the matching time Includes appendices listing the datasets employed for the experimental evaluations discussed in the book Researchers and graduate students interested in the field of structural pattern recognition will find this focused work to be an essential reference on the latest developments in GED. Dr. Kaspar Riesen is a university lecturer of computer science in the Institute for Information Systems at the University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland. 
650 0 |a Computer science. 
650 0 |a Data structures (Computer science). 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Data Structures. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319272511 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-27252-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)