|
|
|
|
LEADER |
02998nam a22005415i 4500 |
001 |
978-3-319-27291-7 |
003 |
DE-He213 |
005 |
20170628141202.0 |
007 |
cr nn 008mamaa |
008 |
160106s2016 gw | s |||| 0|eng d |
020 |
|
|
|a 9783319272917
|9 978-3-319-27291-7
|
024 |
7 |
|
|a 10.1007/978-3-319-27291-7
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a TJ265
|
050 |
|
4 |
|a QC319.8-338.5
|
072 |
|
7 |
|a TGMB
|2 bicssc
|
072 |
|
7 |
|a SCI065000
|2 bisacsh
|
082 |
0 |
4 |
|a 621.4021
|2 23
|
100 |
1 |
|
|a Modest, Michael F.
|e author.
|
245 |
1 |
0 |
|a Radiative Heat Transfer in Turbulent Combustion Systems
|h [electronic resource] :
|b Theory and Applications /
|c by Michael F. Modest, Daniel C. Haworth.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2016.
|
300 |
|
|
|a XVI, 151 p. 53 illus., 31 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a SpringerBriefs in Applied Sciences and Technology,
|x 2191-530X
|
505 |
0 |
|
|a Introduction -- Chemically Reacting Turbulent Flows -- Radiation Properties, RTE Solvers, and TRI Models -- Radiation Effects in Laminar Flames -- Turbulence/Chemistry/Radiation Interactions in Atmospheric Pressure Turbulent Flames -- High-Pressure Combustion Systems -- Summary, Conclusions and Future Prospects.
|
520 |
|
|
|a This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.
|
650 |
|
0 |
|a Engineering.
|
650 |
|
0 |
|a Energy systems.
|
650 |
|
0 |
|a Thermodynamics.
|
650 |
|
0 |
|a Heat engineering.
|
650 |
|
0 |
|a Heat transfer.
|
650 |
|
0 |
|a Mass transfer.
|
650 |
|
0 |
|a Fluid mechanics.
|
650 |
1 |
4 |
|a Engineering.
|
650 |
2 |
4 |
|a Engineering Thermodynamics, Heat and Mass Transfer.
|
650 |
2 |
4 |
|a Engineering Fluid Dynamics.
|
650 |
2 |
4 |
|a Energy Systems.
|
700 |
1 |
|
|a Haworth, Daniel C.
|e author.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319272894
|
830 |
|
0 |
|a SpringerBriefs in Applied Sciences and Technology,
|x 2191-530X
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-319-27291-7
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-ENG
|
950 |
|
|
|a Engineering (Springer-11647)
|