Techniques and Environments for Big Data Analysis Parallel, Cloud, and Grid Computing /

This volume is aiming at a wide range of readers and researchers in the area of Big Data by presenting the recent advances in the fields of Big Data Analysis, as well as the techniques and tools used to analyze it. The book includes 10 distinct chapters providing a concise introduction to Big Data A...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Mishra, Bhabani Shankar Prasad (Επιμελητής έκδοσης), Dehuri, Satchidananda (Επιμελητής έκδοσης), Kim, Euiwhan (Επιμελητής έκδοσης), Wang, Gi-Name (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Σειρά:Studies in Big Data, 17
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03092nam a22005295i 4500
001 978-3-319-27520-8
003 DE-He213
005 20160207021029.0
007 cr nn 008mamaa
008 160205s2016 gw | s |||| 0|eng d
020 |a 9783319275208  |9 978-3-319-27520-8 
024 7 |a 10.1007/978-3-319-27520-8  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Techniques and Environments for Big Data Analysis  |h [electronic resource] :  |b Parallel, Cloud, and Grid Computing /  |c edited by Bhabani Shankar Prasad Mishra, Satchidananda Dehuri, Euiwhan Kim, Gi-Name Wang. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XI, 191 p. 103 illus., 27 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 17 
505 0 |a Introduction to Big Data Analysis -- Parallel Environments -- A Deep Dive into the Hadoop World to Explore its Various Performances -- Natural Language Processing and Machine Learning for Big Data -- Big Data and Cyber Foraging: Future Scope and Challenges -- Parallel GA in Big Data Analysis -- Evolutionary Algorithm Based Techniques to Handle Big Data -- Statistical and Evolutionary Feature Selection Techniques Parallelized using MapReduce Programming Model -- A Data Aware Scheme for Scheduling Big-Data Applications on SAVANNA Hadoop -- The Role of Grid Technologies: A Next Level Combat with Big Data. 
520 |a This volume is aiming at a wide range of readers and researchers in the area of Big Data by presenting the recent advances in the fields of Big Data Analysis, as well as the techniques and tools used to analyze it. The book includes 10 distinct chapters providing a concise introduction to Big Data Analysis and recent Techniques and Environments for Big Data Analysis. It gives insight into how the expensive fitness evaluation of evolutionary learning can play a vital role in big data analysis by adopting Parallel, Grid, and Cloud computing environments. 
650 0 |a Engineering. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Mishra, Bhabani Shankar Prasad.  |e editor. 
700 1 |a Dehuri, Satchidananda.  |e editor. 
700 1 |a Kim, Euiwhan.  |e editor. 
700 1 |a Wang, Gi-Name.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319275185 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 17 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-27520-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)