The Spectrum of Hyperbolic Surfaces

This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called “arithmetic hyperbolic surfaces”, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bergeron, Nicolas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preface
  • Introduction
  • Arithmetic Hyperbolic Surfaces
  • Spectral Decomposition
  • Maass Forms
  • The Trace Formula
  • Multiplicity of lambda1 and the Selberg Conjecture
  • L-Functions and the Selberg Conjecture
  • Jacquet-Langlands Correspondence
  • Arithmetic Quantum Unique Ergodicity
  • Appendices
  • References
  • Index of notation
  • Index
  • Index of names.