Modeling Discrete Time-to-Event Data

This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research...

Full description

Bibliographic Details
Main Authors: Tutz, Gerhard (Author), Schmid, Matthias (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Series:Springer Series in Statistics,
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03375nam a22004695i 4500
001 978-3-319-28158-2
003 DE-He213
005 20160614153523.0
007 cr nn 008mamaa
008 160614s2016 gw | s |||| 0|eng d
020 |a 9783319281582  |9 978-3-319-28158-2 
024 7 |a 10.1007/978-3-319-28158-2  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Tutz, Gerhard.  |e author. 
245 1 0 |a Modeling Discrete Time-to-Event Data  |h [electronic resource] /  |c by Gerhard Tutz, Matthias Schmid. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 247 p. 58 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a Introduction -- The Life Table -- Basic Regression Models -- Evaluation and Model Choice -- Nonparametric Modelling and Smooth Effects -- Tree-Based Approaches -- High-Dimensional Models - Structuring and Selection of Predictors -- Competing Risks Models -- Multiple-Spell Analysis -- Frailty Models and Heterogeneity -- Multiple-Spell Analysis -- List of Examples -- Bibliography -- Subject Index -- Author Index. 
520 |a This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book. . 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
700 1 |a Schmid, Matthias.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319281568 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-28158-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)