Sparse Grids and Applications - Stuttgart 2014
This volume of LNCSE is a collection of the papers from the proceedings of the third workshop on sparse grids and applications. Sparse grids are a popular approach for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or fo...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Έκδοση: | 1st ed. 2016. |
Σειρά: | Lecture Notes in Computational Science and Engineering,
109 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Peng Chen and Christoph Schwab: Adaptive Sparse Grid Model Order Reduction for Fast Bayesian Estimation and Inversion
- Fabian Franzelin and Dirk Pflüger: From Data to Uncertainty: An E_cient Integrated Data-Driven Sparse Grid Approach to Propagate Uncertainty
- Helmut Harbrecht and Michael Peters: Combination Technique Based Second Moment Analysis for Elliptic PDEs on Random Domains
- Brendan Harding: Adaptive sparse grids and extrapolation techniques
- Philipp Hupp and Riko Jacob: A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm
- Valeriy Khakhutskyy and Markus Hegland: Spatially-Dimension- Adaptive Sparse Grids for Online Learning
- Katharina Kormann and Eric Sonnendrücker: Sparse Grids for the Vlasov–Poisson Equation
- Fabio Nobile, Lorenzo Tamellini, Francesco Tesei and Raul Tempone: An Adaptive Sparse Grid Algorithm for Elliptic PDEs with Lognormal Diffusion Coefficient
- David Pfander, Alexander Heinecke, and Dirk Pflüger: A New Subspace-Based Algorithm for E_cient Spatially Adaptive Sparse Grid Regression, Classification and Multi- Evaluation
- Sharif Rahman, Xuchun Ren, and Vaibhav Yadav: High-Dimensional Stochastic Design Optimization by Adaptive-Sparse Polynomial Dimensional Decomposition
- Jie Shen, Yingwei Wang, and Haijun Yu: E_cient Spectral-Element Methods for the Electronic Schrödinger Equation
- Hoang Tran, Clayton G. Webster, and Guannan Zhang: A Sparse Grid Method for Bayesian Uncertainty Quantification with Application to Large Eddy Simulation Turbulence Models
- Julian Valentin and Dirk Pflüger: Hierarchical Gradient-Based Optimization with BSplines on Sparse Grids.