Introduction to Calculus and Classical Analysis

This completely self-contained text is intended either for a course in honors calculus or for an introduction to analysis. Beginning with the real number axioms, and involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate math majors. This f...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hijab, Omar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:4th ed. 2016.
Σειρά:Undergraduate Texts in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03837nam a22005175i 4500
001 978-3-319-28400-2
003 DE-He213
005 20160218152138.0
007 cr nn 008mamaa
008 160209s2016 gw | s |||| 0|eng d
020 |a 9783319284002  |9 978-3-319-28400-2 
024 7 |a 10.1007/978-3-319-28400-2  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 511.4  |2 23 
100 1 |a Hijab, Omar.  |e author. 
245 1 0 |a Introduction to Calculus and Classical Analysis  |h [electronic resource] /  |c by Omar Hijab. 
250 |a 4th ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 427 p. 69 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a Preface -- A Note to the Reader -- 1. The Set of Real Numbers -- 2. Continuity -- 3. Differentiation.-4. Integration -- 5. Applications -- 6. Generalizations -- A. Solutions -- References -- Index. 
520 |a This completely self-contained text is intended either for a course in honors calculus or for an introduction to analysis. Beginning with the real number axioms, and involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate math majors. This fourth edition includes an additional chapter on the fundamental theorems in their full Lebesgue generality, based on the Sunrise Lemma. Key features of this text include: • Applications from several parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; • A heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; • Traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; • A self-contained treatment of the fundamental theorems of calculus in the general case using the Sunrise Lemma; • The integral is defined as the area under the graph, while the area is defined for every subset of the plane; • 450 problems with all the solutions presented at the back of the text. Reviews: "Chapter 5 is…an astonishing tour de force…" —Steven G. Krantz, American Math. Monthly "For a treatment…[of infinite products and Bernoulli series] that is very close to Euler’s and even more elementary…" —V. S. Varadarajan, Bulletin AMS "This is a very intriguing, decidedly unusual, and very satisfying treatment of calculus and introductory analysis. It's full of quirky little approaches to standard topics that make one wonder over and over again, 'Why is it never done like this?'" —John Allen Paulos, Author of Innumeracy and A Mathematician Reads the Newspaper. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Sequences (Mathematics). 
650 0 |a Special functions. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Special Functions. 
650 2 4 |a Combinatorics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319283999 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-28400-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)