Divergent Series, Summability and Resurgence III Resurgent Methods and the First Painlevé Equation /

The aim of this volume is two-fold. First, to show how the resurgent methods introduced in volume 1 can be applied efficiently in a non-linear setting; to this end further properties of the resurgence theory must be developed. Second, to analyze the fundamental example of the First Painlevé equation...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Delabaere, Eric (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Lecture Notes in Mathematics, 2155
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03297nam a22005295i 4500
001 978-3-319-29000-3
003 DE-He213
005 20160628170726.0
007 cr nn 008mamaa
008 160628s2016 gw | s |||| 0|eng d
020 |a 9783319290003  |9 978-3-319-29000-3 
024 7 |a 10.1007/978-3-319-29000-3  |2 doi 
040 |d GrThAP 
050 4 |a QA292 
050 4 |a QA295 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.24  |2 23 
100 1 |a Delabaere, Eric.  |e author. 
245 1 0 |a Divergent Series, Summability and Resurgence III  |h [electronic resource] :  |b Resurgent Methods and the First Painlevé Equation /  |c by Eric Delabaere. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXII, 230 p. 35 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2155 
505 0 |a Avant-Propos -- Preface to the three volumes -- Preface to this volume -- Some elements about ordinary differential equations -- The first Painlevé equation -- Tritruncated solutions for the first Painlevé equation -- A step beyond Borel-Laplace summability -- Transseries and formal integral for the first Painlevé equation -- Truncated solutions for the first Painlevé equation -- Supplements to resurgence theory -- Resurgent structure for the first Painlevé equation -- Index. 
520 |a The aim of this volume is two-fold. First, to show how the resurgent methods introduced in volume 1 can be applied efficiently in a non-linear setting; to this end further properties of the resurgence theory must be developed. Second, to analyze the fundamental example of the First Painlevé equation. The resurgent analysis of singularities is pushed all the way up to the so-called “bridge equation”, which concentrates all information about the non-linear Stokes phenomenon at infinity of the First Painlevé equation. The third in a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists who are interested in divergent power series and related problems, such as the Stokes phenomenon. The prerequisites are a working knowledge of complex analysis at the first-year graduate level and of the theory of resurgence, as presented in volume 1. . 
650 0 |a Mathematics. 
650 0 |a Functions of complex variables. 
650 0 |a Differential equations. 
650 0 |a Sequences (Mathematics). 
650 0 |a Special functions. 
650 1 4 |a Mathematics. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Special Functions. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319289991 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2155 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-29000-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)