Divergent Series, Summability and Resurgence III Resurgent Methods and the First Painlevé Equation /
The aim of this volume is two-fold. First, to show how the resurgent methods introduced in volume 1 can be applied efficiently in a non-linear setting; to this end further properties of the resurgence theory must be developed. Second, to analyze the fundamental example of the First Painlevé equation...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Σειρά: | Lecture Notes in Mathematics,
2155 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Avant-Propos
- Preface to the three volumes
- Preface to this volume
- Some elements about ordinary differential equations
- The first Painlevé equation
- Tritruncated solutions for the first Painlevé equation
- A step beyond Borel-Laplace summability
- Transseries and formal integral for the first Painlevé equation
- Truncated solutions for the first Painlevé equation
- Supplements to resurgence theory
- Resurgent structure for the first Painlevé equation
- Index.