Divergent Series, Summability and Resurgence II Simple and Multiple Summability /

Addressing the question how to “sum” a power series in one variable when it diverges, that is, how to attach to it analytic functions, the volume gives answers by presenting and comparing the various theories of k-summability and multisummability. These theories apply in particular to all solutions...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Loday-Richaud, Michèle (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Lecture Notes in Mathematics, 2154
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03586nam a22005535i 4500
001 978-3-319-29075-1
003 DE-He213
005 20161213141105.0
007 cr nn 008mamaa
008 160628s2016 gw | s |||| 0|eng d
020 |a 9783319290751  |9 978-3-319-29075-1 
024 7 |a 10.1007/978-3-319-29075-1  |2 doi 
040 |d GrThAP 
050 4 |a QA292 
050 4 |a QA295 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.24  |2 23 
100 1 |a Loday-Richaud, Michèle.  |e author. 
245 1 0 |a Divergent Series, Summability and Resurgence II  |h [electronic resource] :  |b Simple and Multiple Summability /  |c by Michèle Loday-Richaud. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXIII, 272 p. 64 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2154 
505 0 |a Avant-propos -- Preface to the three volumes -- Introduction to this volume -- 1 Asymptotic Expansions in the Complex Domain -- 2 Sheaves and Čech cohomology -- 3 Linear Ordinary Differential Equations -- 4 Irregularity and Gevrey Index Theorems -- 5 Four Equivalent Approaches to k-Summability -- 6 Tangent-to-Identity Diffeomorphisms -- 7 Six Equivalent Approaches to Multisummability -- Exercises -- Solutions to Exercises -- Index -- Glossary of Notations -- References. 
520 |a Addressing the question how to “sum” a power series in one variable when it diverges, that is, how to attach to it analytic functions, the volume gives answers by presenting and comparing the various theories of k-summability and multisummability. These theories apply in particular to all solutions of ordinary differential equations. The volume includes applications, examples and revisits, from a cohomological point of view, the group of tangent-to-identity germs of diffeomorphisms of C studied in volume 1. With a view to applying the theories to solutions of differential equations, a detailed survey of linear ordinary differential equations is provided which includes Gevrey asymptotic expansions, Newton polygons, index theorems and Sibuya’s proof of the meromorphic classification theorem that characterizes the Stokes phenomenon for linear differential equations. This volume is the second of a series of three entitled Divergent Series, Summability and Resurgence. It is aimed at graduate students and researchers in mathematics and theoretical physics who are interested in divergent series, Although closely related to the other two volumes it can be read independently. 
650 0 |a Mathematics. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Differential equations. 
650 0 |a Sequences (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Difference and Functional Equations. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319290744 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2154 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-29075-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)