Machine Learning Techniques for Gait Biometric Recognition Using the Ground Reaction Force /

This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mason, James Eric (Συγγραφέας), Traoré, Issa (Συγγραφέας), Woungang, Isaac (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03301nam a22005295i 4500
001 978-3-319-29088-1
003 DE-He213
005 20160205161428.0
007 cr nn 008mamaa
008 160204s2016 gw | s |||| 0|eng d
020 |a 9783319290881  |9 978-3-319-29088-1 
024 7 |a 10.1007/978-3-319-29088-1  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Mason, James Eric.  |e author. 
245 1 0 |a Machine Learning Techniques for Gait Biometric Recognition  |h [electronic resource] :  |b Using the Ground Reaction Force /  |c by James Eric Mason, Issa Traoré, Isaac Woungang. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXXIV, 223 p. 76 illus., 73 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Background -- Experimental Design and Dataset -- Feature Extraction.-Normalization -- Classification -- Measured Performance -- Experimental Analysis -- Conclusion. 
520 |a This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book · introduces novel machine-learning-based temporal normalization techniques · bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition · provides detailed discussions of key research challenges and open research issues in gait biometrics recognition · compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear. 
650 0 |a Engineering. 
650 0 |a Biometrics (Biology). 
650 0 |a System safety. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Biometrics. 
650 2 4 |a Security Science and Technology. 
700 1 |a Traoré, Issa.  |e author. 
700 1 |a Woungang, Isaac.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319290867 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-29088-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)