Intelligent Techniques for Data Science

This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Akerkar, Rajendra (Συγγραφέας), Sajja, Priti Srinivas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02770nam a22004815i 4500
001 978-3-319-29206-9
003 DE-He213
005 20161011124425.0
007 cr nn 008mamaa
008 161011s2016 gw | s |||| 0|eng d
020 |a 9783319292069  |9 978-3-319-29206-9 
024 7 |a 10.1007/978-3-319-29206-9  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Akerkar, Rajendra.  |e author. 
245 1 0 |a Intelligent Techniques for Data Science  |h [electronic resource] /  |c by Rajendra Akerkar, Priti Srinivas Sajja. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVI, 272 p. 121 illus., 57 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Introduction -- Data Analytics -- Basic Learning Algorithms -- Fuzzy Logic -- Artificial Neural Networks -- Genetic Algorithms and Evolutionary Computing -- Other Metaheuristics and Classification Approaches -- Analytics and Big Data -- Data Analytics Using R -- Appendix I: Tools for Data Science -- Appendix II: Tools for Computational Intelligence. 
520 |a This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions. The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism. 
650 0 |a Computer science. 
650 0 |a Knowledge management. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Knowledge Management. 
700 1 |a Sajja, Priti Srinivas.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319292052 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-29206-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)