The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators

This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Koshmanenko, Volodymyr (Συγγραφέας), Dudkin, Mykola (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Σειρά:Operator Theory: Advances and Applications, 253
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03492nam a22004935i 4500
001 978-3-319-29535-0
003 DE-He213
005 20160708111359.0
007 cr nn 008mamaa
008 160708s2016 gw | s |||| 0|eng d
020 |a 9783319295350  |9 978-3-319-29535-0 
024 7 |a 10.1007/978-3-319-29535-0  |2 doi 
040 |d GrThAP 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
100 1 |a Koshmanenko, Volodymyr.  |e author. 
245 1 4 |a The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators  |h [electronic resource] /  |c by Volodymyr Koshmanenko, Mykola Dudkin. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XX, 237 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 253 
505 0 |a Preface -- Introduction -- 1.Preliminaries -- 2.Symmetric Operators and Closable Quadratic Forms -- 3.Self-adjoint Extensions of Symmetric Operators -- 4.Rigged Hilbert Spaces -- 5.Singular Quadratic Forms -- 6.Dense Subspaces in Scales of Hilbert Spaces -- 7.Singular Perturbations of Self-adjoint Operators -- 8.Super-singular Perturbations -- 9.Some Aspects of the Spectral Theory -- References -- Subject Index -- Notation Index. 
520 |a This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadratic forms, and the theory of rigged Hilbert spaces. The book will appeal to researchers in mathematics and mathematical physics studying the scales of densely embedded Hilbert spaces, the singular perturbations phenomenon, and singular interaction problems. 
650 0 |a Mathematics. 
650 0 |a Measure theory. 
650 0 |a Operator theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
700 1 |a Dudkin, Mykola.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319295336 
830 0 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 253 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-29535-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)