Stochastic Models with Power-Law Tails The Equation X = AX + B /

In this monograph the authors give a systematic approach to the probabilistic properties of the fixed point equation X=AX+B. A probabilistic study of the stochastic recurrence equation X_t=A_tX_{t-1}+B_t for real- and matrix-valued random variables A_t, where (A_t,B_t) constitute an iid sequence, is...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Buraczewski, Dariusz (Συγγραφέας), Damek, Ewa (Συγγραφέας), Mikosch, Thomas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Springer Series in Operations Research and Financial Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03403nam a22005295i 4500
001 978-3-319-29679-1
003 DE-He213
005 20160704141212.0
007 cr nn 008mamaa
008 160704s2016 gw | s |||| 0|eng d
020 |a 9783319296791  |9 978-3-319-29679-1 
024 7 |a 10.1007/978-3-319-29679-1  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Buraczewski, Dariusz.  |e author. 
245 1 0 |a Stochastic Models with Power-Law Tails  |h [electronic resource] :  |b The Equation X = AX + B /  |c by Dariusz Buraczewski, Ewa Damek, Thomas Mikosch. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 320 p. 9 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Operations Research and Financial Engineering,  |x 1431-8598 
505 0 |a Introduction -- The Univariate Case -- Univariate Limit Theoru -- Multivariate Case -- Miscellanea -- Appendices. 
520 |a In this monograph the authors give a systematic approach to the probabilistic properties of the fixed point equation X=AX+B. A probabilistic study of the stochastic recurrence equation X_t=A_tX_{t-1}+B_t for real- and matrix-valued random variables A_t, where (A_t,B_t) constitute an iid sequence, is provided. The classical theory for these equations, including the existence and uniqueness of a stationary solution, the tail behavior with special emphasis on power law behavior, moments and support, is presented. The authors collect recent asymptotic results on extremes, point processes, partial sums (central limit theory with special emphasis on infinite variance stable limit theory), large deviations, in the univariate and multivariate cases, and they further touch on the related topics of smoothing transforms, regularly varying sequences and random iterative systems. The text gives an introduction to the Kesten-Goldie theory for stochastic recurrence equations of the type X_t=A_tX_{t-1}+B_t. It provides the classical results of Kesten, Goldie, Guivarc'h, and others, and gives an overview of recent results on the topic. It presents the state-of-the-art results in the field of affine stochastic recurrence equations and shows relations with non-affine recursions and multivariate regular variation. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 0 |a Economic theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Economic Theory/Quantitative Economics/Mathematical Methods. 
700 1 |a Damek, Ewa.  |e author. 
700 1 |a Mikosch, Thomas.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319296784 
830 0 |a Springer Series in Operations Research and Financial Engineering,  |x 1431-8598 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-29679-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)