Geometrodynamics of Gauge Fields On the Geometry of Yang-Mills and Gravitational Gauge Theories /

This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mielke, Eckehard W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Έκδοση:2nd ed. 2017.
Σειρά:Mathematical Physics Studies,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03852nam a22005295i 4500
001 978-3-319-29734-7
003 DE-He213
005 20170201175134.0
007 cr nn 008mamaa
008 170201s2017 gw | s |||| 0|eng d
020 |a 9783319297347  |9 978-3-319-29734-7 
024 7 |a 10.1007/978-3-319-29734-7  |2 doi 
040 |d GrThAP 
050 4 |a QC178 
050 4 |a QC173.5-173.65 
072 7 |a PHDV  |2 bicssc 
072 7 |a PHR  |2 bicssc 
072 7 |a SCI033000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 |a Mielke, Eckehard W.  |e author. 
245 1 0 |a Geometrodynamics of Gauge Fields  |h [electronic resource] :  |b On the Geometry of Yang-Mills and Gravitational Gauge Theories /  |c by Eckehard W. Mielke. 
250 |a 2nd ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVII, 373 p. 18 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Physics Studies,  |x 0921-3767 
505 0 |a Preface -- 1 Historical background -- 2 Geometry of gauge fields -- 3 Maxwell and Yang-Mills theory -- 4 Gravitation as a gauge theory -- 5 Einstein-Cartan theory -- 6 Teleparallelism -- 7 Yang’s theory of gravity -- 8 BRST quantization of gravity -- 9 Gravitational instantons -- 10 Three-dimensional gravity -- 11 Spinor bundles -- 12 Chiral anomalies -- 13 Topological SL(5;R) gauge invariant action -- 14 Geometrodynamics and its extensions -- 15 Color Geometrodynamics -- 16 Geometrodynamical model of quark confinement?- Appendix A Notation and mathematical terms -- Appendix B Calculus of exterior forms -- Appendix C Lie groups. 
520 |a This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang-Mills theories, instanton solutions and topological invariants are included. By transferring these concepts to local space-time symmetries, generalizations of Einstein's theory of gravity arise in a Riemann-Cartan space with curvature and torsion. It provides the framework in which the (broken) Poincaré gauge theory, the Rainich geometrization of the Einstein-Maxwell system, and higher-dimensional, non-abelian Kaluza-Klein theories are developed. Since the discovery of the Higgs boson, concepts of spontaneous symmetry breaking in gravity have come again into focus, and, in this revised edition, these will be exposed in geometric terms. Quantizing gravity remains an open issue: formulating it as a de Sitter type gauge theory in the spirit of Yang-Mills, some new progress in its topological form is presented. After symmetry breaking, Einstein’s standard general relativity with cosmological constant emerges as a classical background. The geometrical structure of BRST quantization with non-propagating topological ghosts is developed in some detail. 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 0 |a Gravitation. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 1 4 |a Physics. 
650 2 4 |a Classical and Quantum Gravitation, Relativity Theory. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319297323 
830 0 |a Mathematical Physics Studies,  |x 0921-3767 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-29734-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)