Simulation-Driven Design by Knowledge-Based Response Correction Techniques

Focused on efficient simulation-driven multi-fidelity optimization techniques, this monograph on simulation-driven optimization covers simulations utilizing physics-based low-fidelity models, often based on coarse-discretization simulations or other types of simplified physics representations, such...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Koziel, Slawomir (Συγγραφέας), Leifsson, Leifur (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03973nam a22004815i 4500
001 978-3-319-30115-0
003 DE-He213
005 20160523120022.0
007 cr nn 008mamaa
008 160513s2016 gw | s |||| 0|eng d
020 |a 9783319301150  |9 978-3-319-30115-0 
024 7 |a 10.1007/978-3-319-30115-0  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Koziel, Slawomir.  |e author. 
245 1 0 |a Simulation-Driven Design by Knowledge-Based Response Correction Techniques  |h [electronic resource] /  |c by Slawomir Koziel, Leifur Leifsson. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XI, 262 p. 167 illus., 93 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Simulation-Driven Design -- Fundamentals of Numerical Optimization -- Introduction to Surrogate-Based Modeling and Surrogate-Based Optimization -- Design Optimization Using Response Correction Techniques -- Surrogate-Based Optimization Using Parametric Response Correction -- Non-Parametric Response Correction Techniques -- Expedited Simulation-Driven Optimization Using Adaptively Adjusted Design Specification -- Surrogate-Assisted Design Optimization Using Response Features -- Enhancing Response Correction Techniques by Adjoint Sensitivity -- Multi-Objective Optimization Using Variable-Fidelity Models and Response Correction -- Physics-Base Surrogate Models Using Response Correction -- Summary and Discussion -- References. . 
520 |a Focused on efficient simulation-driven multi-fidelity optimization techniques, this monograph on simulation-driven optimization covers simulations utilizing physics-based low-fidelity models, often based on coarse-discretization simulations or other types of simplified physics representations, such as analytical models. The methods presented in the book exploit as much as possible any knowledge about the system or device of interest embedded in the low-fidelity model with the purpose of reducing the computational overhead of the design process. Most of the techniques described in the book are of response correction type and can be split into parametric (usually based on analytical formulas) and non-parametric, i.e., not based on analytical formulas. The latter, while more complex in implementation, tend to be more efficient. The book presents a general formulation of response correction techniques as well as a number of specific methods, including those based on correcting the low-fidelity model response (output space mapping, manifold mapping, adaptive response correction and shape-preserving response prediction), as well as on suitable modification of design specifications. Detailed formulations, application examples and the discussion of advantages and disadvantages of these techniques are also included. The book demonstrates the use of the discussed techniques for solving real-world engineering design problems, including applications in microwave engineering, antenna design, and aero/hydrodynamics. 
650 0 |a Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Mathematical models. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Discrete Optimization. 
650 2 4 |a Continuous Optimization. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Leifsson, Leifur.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319301136 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-30115-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)