Infinite Matrices and Their Recent Applications

This monograph covers the theory of finite and infinite matrices over the fields of real numbers, complex numbers and over quaternions. Emphasizing topics such as sections or truncations and their relationship to the linear operator theory on certain specific separable and sequence spaces, the autho...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Shivakumar, P.N (Συγγραφέας), Sivakumar, K C. (Συγγραφέας), Zhang, Yang (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02915nam a22004455i 4500
001 978-3-319-30180-8
003 DE-He213
005 20160620151230.0
007 cr nn 008mamaa
008 160620s2016 gw | s |||| 0|eng d
020 |a 9783319301808  |9 978-3-319-30180-8 
024 7 |a 10.1007/978-3-319-30180-8  |2 doi 
040 |d GrThAP 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 |a Shivakumar, P.N.  |e author. 
245 1 0 |a Infinite Matrices and Their Recent Applications  |h [electronic resource] /  |c by P.N. Shivakumar, K C Sivakumar, Yang Zhang. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 118 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Finite Matrices and their Nonsingularity -- Infinite Linear Equations -- Generalized Inverses: Real or Complex Field -- Generalized Inverses: Quaternions -- M-matrices over Infinite Dimensional Spaces -- Infinite Linear Programming -- Applications. . 
520 |a This monograph covers the theory of finite and infinite matrices over the fields of real numbers, complex numbers and over quaternions. Emphasizing topics such as sections or truncations and their relationship to the linear operator theory on certain specific separable and sequence spaces, the authors explore techniques like conformal mapping, iterations and truncations that are used to derive precise estimates in some cases and explicit lower and upper bounds for solutions in the other cases. Most of the matrices considered in this monograph have typically special structures like being diagonally dominated or tridiagonal, possess certain sign distributions and are frequently nonsingular. Such matrices arise, for instance, from solution methods for elliptic partial differential equations. The authors focus on both theoretical and computational aspects concerning infinite linear algebraic equations, differential systems and infinite linear programming, among others. Additionally, the authors cover topics such as Bessel’s and Mathieu’s equations, viscous fluid flow in doubly connected regions, digital circuit dynamics and eigenvalues of the Laplacian. 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
700 1 |a Sivakumar, K C.  |e author. 
700 1 |a Zhang, Yang.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319301792 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-30180-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)