Python for Probability, Statistics, and Machine Learning

This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas.  The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Unpingco, José (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03417nam a22005295i 4500
001 978-3-319-30717-6
003 DE-He213
005 20171223021245.0
007 cr nn 008mamaa
008 160316s2016 gw | s |||| 0|eng d
020 |a 9783319307176  |9 978-3-319-30717-6 
024 7 |a 10.1007/978-3-319-30717-6  |2 doi 
040 |d GrThAP 
050 4 |a TK1-9971 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Unpingco, José.  |e author. 
245 1 0 |a Python for Probability, Statistics, and Machine Learning  |h [electronic resource] /  |c by José Unpingco. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 276 p. 110 illus., 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Getting Started with Scientific Python -- Probability -- Statistics -- Machine Learning -- Notation. 
520 |a This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas.  The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples.  This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming. Explains how to simulate, conceptualize, and visualize random statistical processes and apply machine learning methods; Connects to key open-source Python communities and corresponding modules focused on the latest developments in this area; Outlines probability, statistics, and machine learning concepts using an intuitive visual approach, backed up with corresponding visualization codes. 
650 0 |a Engineering. 
650 0 |a Mathematical statistics. 
650 0 |a Data mining. 
650 0 |a Statistics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Electrical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319307152 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-30717-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)