Real Analysis

This textbook is designed for a year-long course in real analysis taken by beginning graduate and advanced undergraduate students in mathematics and other areas such as statistics, engineering, and economics. Written by one of the leading scholars in the field, it elegantly explores the core concept...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Loeb, Peter A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03377nam a22004695i 4500
001 978-3-319-30744-2
003 DE-He213
005 20160505104712.0
007 cr nn 008mamaa
008 160505s2016 gw | s |||| 0|eng d
020 |a 9783319307442  |9 978-3-319-30744-2 
024 7 |a 10.1007/978-3-319-30744-2  |2 doi 
040 |d GrThAP 
050 4 |a QA331.5 
072 7 |a PBKB  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.8  |2 23 
100 1 |a Loeb, Peter A.  |e author. 
245 1 0 |a Real Analysis  |h [electronic resource] /  |c by Peter A Loeb. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XII, 274 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Set Theory and Numbers -- Measure on the Real Line -- Measurable Functions -- Integration -- Differentiation and Integration -- General Measure Spaces -- Introduction to Metric and Normed Spaces -- Hilbert Spaces -- Topological Spaces -- Measure Construction -- Banach Spaces -- Appendices -- References. . 
520 |a This textbook is designed for a year-long course in real analysis taken by beginning graduate and advanced undergraduate students in mathematics and other areas such as statistics, engineering, and economics. Written by one of the leading scholars in the field, it elegantly explores the core concepts in real analysis and introduces new, accessible methods for both students and instructors. The first half of the book develops both Lebesgue measure and, with essentially no additional work for the student, general Borel measures for the real line. Notation indicates when a result holds only for Lebesgue measure. Differentiation and absolute continuity are presented using a local maximal function, resulting in an exposition that is both simpler and more general than the traditional approach. The second half deals with general measures and functional analysis, including Hilbert spaces, Fourier series, and the Riesz representation theorem for positive linear functionals on continuous functions with compact support. To correctly discuss weak limits of measures, one needs the notion of a topological space rather than just a metric space, so general topology is introduced in terms of a base of neighborhoods at a point. The development of results then proceeds in parallel with results for metric spaces, where the base is generated by balls centered at a point. The text concludes with appendices on covering theorems for higher dimensions and a short introduction to nonstandard analysis including important applications to probability theory and mathematical economics. . 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Measure theory. 
650 0 |a Functions of real variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Real Functions. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Measure and Integration. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319307428 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-30744-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)